NILAI KETAKTERATURAN TOTAL SISI DARI GRAF SEGITIGA BERMUDA

  • Novalita Anjelia FKIP UNEJ
  • S Slamin FKIP UNEJ
  • D Dafik FKIP UNEJ

Abstract

Abstract.For a simple graph G, a labelling λ∶V(G)∪E(G)→ {1,2,…,k} is called an edge irregular total k-labelling of G if for any two different edges e and f of G there is, wt(e)≠wt(f). The total edge irregularity strength denoted by tes G is the smallest positive integer k for which G has an edge irregular total k-labelling. In this paper, we consider the total edge irregularity strength of Bermuda Triangle graph and the union isomorphic and non isomorphic Bermuda Triangle graph. We show that tes(〖Btr〗_(n,4) )= ⌈(30n+17)/3⌉, for n≥1, tes(〖sBtr〗_(n,4) )=⌈(s(30n+15)+ 2)/3⌉, for n≥1 and s≥2, and tes(〖Btr〗_(n,4)∪〖Btr〗_(m,4) )=⌈((30n+15)+ (30m+15)+ 2)/3⌉, for 1≤n≤m.

Keywords:Edge irregular total labelling, Irregularity strength, Total edge irregularity strength, Bermuda Triangle graph.
Published
2014-12-01
How to Cite
ANJELIA, Novalita; SLAMIN, S; DAFIK, D. NILAI KETAKTERATURAN TOTAL SISI DARI GRAF SEGITIGA BERMUDA. Kadikma, [S.l.], v. 5, n. 3, dec. 2014. ISSN 2686-3243. Available at: <https://jurnal.unej.ac.id/index.php/kadikma/article/view/1384>. Date accessed: 24 nov. 2024. doi: https://doi.org/10.19184/kdma.v5i3.1384.
Section
Articles