ANALISIS KESTABILAN LOKAL TITIK EKUILIBRIUM MODEL EPIDEMI SEIV DENGAN PERTUMBUHAN LOGISTIK

  • Joko Harianto Fakultas MIPA, Universitas Cenderawasih
  • Inda Puspita Sari Fakultas Kedokteran, Universitas Cenderawasih

Abstract

The SEIV model uses population growth which is assumed to follow logistical growth. The model is studied then analyzed. The analysis shows that the non-endemic (disease-free) equilibrium point is locally asymptotically stable when the basic reproduction number less than one, while the endemic equilibrium point is locally asymptotically stable when the basic reproduction number greater than one. Then a numerical simulation was carried out using Maple software to support the results of the local stability analysis of the equilibrium point. Based on numerical simulations, it shows that a disease will disappear from the population when the basic reproduction number less than one and for a long time a disease will remain in the population (still an epidemic) when the basic reproduction number greater than one.
Keywords: SEIV model, logistical growth, equilibrium point, basic reproduction number
MSC2020: 92C60

Published
2022-03-23
How to Cite
HARIANTO, Joko; SARI, Inda Puspita. ANALISIS KESTABILAN LOKAL TITIK EKUILIBRIUM MODEL EPIDEMI SEIV DENGAN PERTUMBUHAN LOGISTIK. Majalah Ilmiah Matematika dan Statistika, [S.l.], v. 22, n. 1, p. 59-68, mar. 2022. ISSN 2722-9866. Available at: <https://jurnal.unej.ac.id/index.php/MIMS/article/view/30174>. Date accessed: 25 jan. 2025. doi: https://doi.org/10.19184/mims.v22i1.30174.