Experimental Study of TiO2 Nanoparticles Fabrication by Sol-gel and Co-precipitation Methods for TiO2/SnO2 Composite Thin Film as Photoanode

  • E. Endarko Department of Physics, Institut Teknologi Sepuluh Nopember (ITS), Surabaya
  • Siti Rabi’atul Adawiyah Department of Physics, Institut Teknologi Sepuluh Nopember (ITS), Surabaya


Sol-gel and coprecipitation methods successfully prepared titanium dioxide (TiO2) powders with anatase structure. The TiO2 powders are then used to fabricate pure TiO2 thin-film or mixed with SnO2 powders for the TiO2/SnO2 composite thin film. Furthermore, the structural, morphological, as well as the optical properties of films were also investigated. The results showed that the synthesized thin-film of TiO2 powders by sol-gel method obtained better crystallinity and microstructure compared to the synthesized thin film by co-precipitation method. In the DSSC system, these features are needed to increase the electron mobility that responsibility for transport and recombination of photoexcited electrons. SEM images exhibited the smooth surface and uniform in particle size obtained by the addition of SnO2 powders in composite films. The composite thin film also indicated a higher transmittance value.
Keywords: sol-gel,co-precipitation,anatase, composite.


Adawiyah, S.R., Endarko, 2017. Structural and morphological characterization of TiO 2 -SnO2 thin film prepared by combining doctor-blade and sol-gel techniques. IOP Conf. Ser. Mater. Sci. Eng. 188, 012062.

Behnajady, M.A., Eskandarloo, H., Modirshahla, N., Shokri, M., 2011. Sol-Gel Low-temperature Synthesis of Stable Anatase-type TiO2 Nanoparticles Under Different Conditions and its Photocatalytic Activity. Photochem. Photobiol. 87, 1002–1008.

Bhogaita, M., Yadav, S., Bhanushali, A.U., Parsola, A.A., Pratibha Nalini, R., 2016. Synthesis and characterization of TiO2 thin films for DSSC prototype. Mater. Today Proc. 3, 2052–2061.

Choi, S.C., Sohn, S.H., 2012. Synthesis and physical properties of TiO2 microparticles coated by a sol–gel method and their application to dye-sensitized solar cells. Powder Technol. 226, 157–164.

Di Paola, A., Bellardita, M., Palmisano, L., 2013. Brookite, the Least Known TiO2 Photocatalyst, Catalysts.

Essalhi, Z., Hartiti, B., Lfakir, A., Siadat, M., Thevenin, P., 2016. Structural and optical properties of TiO 2 :SnO2 thin films prepared by sol gel method. Mol. Cryst. Liq. Cryst. 627, 148–152.

Gong, J., Sumathy, K., Qiao, Q., Zhou, Z., 2017. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234–246.

Hamadanian, M., Safaei-Ghomi, J., Hosseinpour, M., Masoomi, R., Jabbari, V., 2014. Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater. Sci. Semicond. Process. 27, 733–739.

Jian, L., Shufang, M., Peide, H., Caiyun, S., Bingshe, X., 2005. Synthesis and Characterization of TiO_2 Nanotube [J]. Rare Met. Mater. Eng. 2, 655–659.

Lee, J.-H., Park, N.-G., Shin, Y.-J., 2011. Nano-grain SnO2 electrodes for high conversion efficiency SnO2–DSSC. Sol. Energy Mater. Sol. Cells 95, 179–183.

Liu, Y.-C., Lu, Y.-F., Zeng, Y.-Z., Liao, C.-H., Chung, J.-C., Wei, T.-Y., 2011. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell. Int. J. Photoenergy 2011, 1–9.

Muniz, E.C., Góes, M.S., Silva, J.J., Varela, J.A., Joanni, E., Parra, R., Bueno, P.R., 2011. Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceram. Int. 37, 1017–1024.

Nguyen, T.T., Tran, V.N., Bach, T.C., 2014. Influences of metallic doping on anatase crystalline titanium dioxide: From electronic structure aspects to efficiency of TiO2-based dye sensitized solar cell (DSSC). Mater. Chem. Phys. 144, 114–121.

Park, J.T., Koh, J.K., Byun, S.J., Kang, S.W., Kim, J.H., 2011. Performance enhancement of dye-sensitized solar cells using nanostructural TiO2 films prepared by a graft polymerization and sol–gel process. Electrochim. Acta 56, 3182–3191.

Sathyajothi, S., Jayavel, R., Dhanemozhi, A.C., 2017. The Fabrication of Natural Dye Sensitized Solar Cell (Dssc) based on TiO2 Using Henna And Beetroot Dye Extracts. Mater. Today Proc. 4, 668–676.

Shikoh, A.S., Ahmad, Z., Touati, F., Shakoor, R.A., Al-Muhtaseb, S.A., 2017. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceram. Int. 43, 10540–10545.

Singh, L.K., Karlo, T., Pandey, A., 2014. Performance of fruit extract of Melastoma malabathricum L. as sensitizer in DSSCs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 938–943.

Sociedad Mexicana de Ciencia Superficies y Vacio., M.A., Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales A.C., J.R., Esparza-García, A., Sánchez-Pérez, C., Julien, C.M., 2013. Superficies y vacio., Superficies y vacío. Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales A.C.

Su’ait, M.S., Rahman, M.Y.A., Ahmad, A., 2015. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy 115, 452–470.

Surya, S., Thangamuthu, R., Senthil Kumar, S.M., Murugadoss, G., 2017. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness. Superlattices Microstruct. 102, 424–441.

Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., Irwan, Y.M., 2015. Potential of Purple Cabbage, Coffee, Blueberry and Turmeric as Nature Based Dyes for Dye Sensitized Solar Cell (DSSC). Energy Procedia 79, 799–807.

Tasić, N., Marinković Stanojević, Z., Branković, Z., Lačnjevac, U., Ribić, V., Žunić, M., Novaković, T., Podlogar, M., Branković, G., 2016. Mesoporous films prepared from synthesized TiO2 nanoparticles and their application in dye-sensitized solar cells (DSSCs). Electrochim. Acta 210, 606–614.

Upadhyaya, H.M., Senthilarasu, S., Hsu, M.-H., Kumar, D.K., 2013. Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies. Sol. Energy Mater. Sol. Cells 119, 291–295.

Valencia, S., Marín, J.M., Restrepo, G., 2010. Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. Open Mater. Sci. J. 4, 9–14.

Vidyasagar, C.C., Arthoba Naik, Y., 2016. Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles. Arab. J. Chem. 9, 507–510.

Vijayalakshmi, R., Rajendran, V., 2012. Synthesis and characterization of nano-TiO2 via different methods. Arch. Appl. Sci. Reseacrh 4, 1183–1190.

Wali, Q., Bakr, Z.H., Manshor, N.A., Fakharuddin, A., Jose, R., 2016. SnO2–TiO2 hybrid nanofibers for efficient dye-sensitized solar cells. Sol. Energy 132, 395–404.

Xu, P., Tang, Q., He, B., Li, Q., Chen, H., 2014. Transmission booster from SiO2 incorporated TiO2 crystallites: Enhanced conversion efficiency in dye-sensitized solar cells. Electrochim. Acta 134, 281–286.

Yang, H., Zhang, K., Shi, R., Li, X., Dong, X., Yu, Y., 2006. Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. J. Alloys Compd. 413, 302–306.

Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., Lin, Z., 2015. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162.

Yeh, S.-W., Ko, H.-H., Chiang, H.-M., Chen, Y.-L., Lee, J.-H., Wen, C.-M., Wang, M.-C., 2014. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO2 nanopowders by a simple coprecipitation process without adding surfactant. J. Alloys Compd. 613, 107–116.
How to Cite
ENDARKO, E.; ADAWIYAH, Siti Rabi’atul. Experimental Study of TiO2 Nanoparticles Fabrication by Sol-gel and Co-precipitation Methods for TiO2/SnO2 Composite Thin Film as Photoanode. Jurnal ILMU DASAR, [S.l.], v. 20, n. 1, p. 61-66, jan. 2019. ISSN 2442-5613. Available at: <https://jurnal.unej.ac.id/index.php/JID/article/view/9154>. Date accessed: 13 july 2020. doi: https://doi.org/10.19184/jid.v20i1.9154.