Analysis of Secondary Metabolites of Shoot, Callus Culture and Field Plant of Chrysanthemum morifolium Ramat

  • Tia Setiawati Departemen Biologi Fakultas MIPA Universitas Padjadjaran
  • Alma Ayalla Departemen Biologi Fakultas MIPA Universitas Padjadjaran
  • Mohamad Nurzaman Departemen Biologi Fakultas MIPA Universitas Padjadjaran
  • Valentina A. Kusumaningtyas Departemen Kimia Fakultas MIPA Universitas Jenderal Ahmad Yani
  • Ichsan Bari Departemen Agroteknologi Fakultas Pertanian Universitas Padjadjaran

Abstract

The chrysanthemum plant (Chrysanthemum morifolium Ramat.) contains many secondary metabolites such as flavonoids and various volatile compounds that can be utilized as drugs. Tissue culture can be an alternative to enhance the production of certain secondary metabolite. The study aimed to determine the types of secondary metabolites that contained in shoot culture, callus and field plants of C. morifolium. The research method was exploration in the laboratory to analyze and compare the content of secondary metabolite from shoot culture, callus and field plants of C. morifolium. Callus was induced by explants of C. morifolium plantlet stems and leaves respectively on MS medium with an addition of 3 ppm 2,4-D + 2 ppm kinetin and 4 ppm 2,4-D. For shoot culture, single nodule explants with one leaf were planted on MS media with the addition of 1 ppm BAP. The secondary metabolite compouds were analized and identified by GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that various types of secondary metabolites contained in shoot culture, callus and field plants of C. morifolium. In callus culture from leaf explants, four compounds from groups of alcohol, acetic acid and organosilicon were identified, whereas in callus culture from stem explants were identified eight compounds from aldehydes, esters, alkanes, and carboxylic acids group. In the shoot culture, nine compounds of alcohol, ketone, aldehyde, cycloalkane and organosilicon group were identified, while in the field plants five compounds were identified from the cycloalkanes, ketones, organoborones and organosilicon group. Some detected compounds have a potential as precursors of alkaloid, phenolic, and flavonoid.
Keywords: chrysanthemum, culture, shoots, callus, secondary metabolites.

References

Abd Elaleem KG, Ahmed MM & Noor MKM. 2015. Effect of explants and plant growth regulators on callus induction in Ricinus communis L. Res. J. Pharmaceutical Sci. 4(1): 1-6.

Ali S & Tariq A. 2013. Analysis of secondary metabolites in callus cultures of Momordica charantia cv. Jaunpuri. 59 (1): 23-32.

Anjusha S& Gangaprasad A. 2017. Callus culture and in vitro production of anthraquinone in Gynochthodes umbellata (L.) Razafim. & B. Bremer (Rubiaceae). Industrial Crops and Products. 95:608-614.

Bellini C, Pacurar DI & Perrone I. 2014. Adventitious roots and lateral roots: similarities and differences. Annu. Rev. Plant Biol. 65: 639–666.

Bello-Bello JJ, Martínez-Estrada E, Caamal-Velázquez JH &Morales-Ramos V. 2016. Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). Afr. J. Biotechnol. 15(8) : 272-277.

Castro AHF, de Queiroz Braga K, de Sousa FM, Coimbra MC & Chagas RCR. 2016. Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Revista Ciência Agronômica. 47(1): 143-151.

Chang, R. 2004. Kimia Dasar: Konsep-konsep Inti. Ed. ke-3. Jakarta: Penerbit Erlangga.

Chung JP, Huang CY & Dai TE. 2010. Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci. Hortic. 124, 511–516.

Cook NC &Samman S .1996. Flavonoids- chemistry, metabolism, cardioprotective effects, and dietary sources. Nutritio Biochem. 7: 66- 76.

Cortleven A, Marg I, Yamburenko MV, Schlicke H, Hill K, Grimm B, Schaller GE & Schmülling T. 2016. Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiol. 172(1): 464–478.

Dias MI, Sousa MJ,RC Alves & Ferreira ICFR. 2016. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Prod. 82 : 9–22.

Docimo T, Davis AJ, Luck K, Fellenberg C, Reichelt M, Phillips M, Gershenzon J & Auria JCD.2015. Influence of medium and elicitors on the production of cocaine, amino acids and phytohormones by Erythroxylum coca calli. Plant Cell Tissue Organ Cult. 120(3):1061– 1075

Dowom SA, Abrishamchi P &Radjabian R. 2017. Enhanced phenolic acids production in regenerated shoot cultures of Salvia virgata Jacq. after elicitation with Ag+ions, methyl jasmonateand yeast extract. Industrial Crops and Products. 103 : 81–88.

Drozd J. 1985 Chemical derivatization in gas chromatography. J. Chrom Library.19.

Dwi NM, Waeniati, Muslimin&Suwastika IN. 2012. Pengaruh penambahan air kelapa dan berbagai konsentrasi hormon 2,4-D pada medium MS dalam menginduksi kalus tanaman anggur hijau (Vitis vinifera L.). J. Natural Sci. 1.(1) : 53-62.

Fejér J, Gruľová D, Feo VD, Ürgeová E, Obert B &Preťová A. 2018. Mentha×piperita L. nodal segments cultures and their essential oil production. Industrial Crops & Prod. 112 : 550–555.

Fessenden RJ &Fessenden JS. 1982.Kimia Organik. Edisi Ketiga. Jakarta: Erlangga.
Gago J, Martínez-Núñez L, Landín M, Flexas J &Gallego PP. 2014. Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology. PLoS One.9(1): e85989.

Ghanti K, Kaviraj CP, Venugopal RB, Jabeen FTZ & Srinath R. 2004. Rapid regeneration of Mentha x pipperita L. from shoot tip and nodal explants. Indian J.Biotechnol. 3: 594–598.

Huang WL, Lee CH & Chen YR. 2012. Levels of endogenous abscisic acid andindole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tissue Organ Cult. 108 : 257–263.

Ilag LL, Olson NH, Dokland T, Music CL, Cheng RH, Bowen Z, McKenna R, Rossmann MG, Baker TS &Incardona NL. 1994. DNA packaging intermediates of bacteriophage fX174. Structure .3: 353–363.

Kim HJ & Lee YS. 2005. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities. J. Planta Med. 71: 871–876.

Kristina NN, Kusumah ED & Lailani PK. 2009. Analisis fitokimia dan penampilan polapita protein tanaman pegagan (Centella asiatica) hasil konservasi in vitro. Bul. Littro. 20 (1) : 11 - 20.

Lestari AW. 2018. Induksi kalus eksplan batang krisan (Chrysanthemum morifolium Ramat cv. Yulimar) dengan kombinasi konsentrasi zatpengatur tumbuh asam 2,4-diklorofenoksiasetat (2,4-D) dan kinetin. Laporan Kerja Praktik. Program Studi Biologi. FMIPA. Unpad.

Marchev A, Haas Ch Schulz S, Georgiev V, Steingroewer J, Bley T & Pavlov A. 2014. Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances. Biotechnol. Lett. 36: 211–221.

Minarsih H, Suharyo, Riyadi I & Ratnadewi D. 2016. Pengaruh jumlah subkultur dan media sub-optimal terhadap pertumbuhan dan kemampuan regenerasi kalus tebu (Saccharum officinarum L.). Menara Perkebunan.84(1), 28-40.

Muleo R & Morini S. 2006. Light quality regulates shoot cluster growth and development of MM106 apple genotype in in vitro culture. Sci. Hortic. 108(4):364-370.

Murch SJ & Saxena PK. 2006. A melatonin-rich germplasm line of St John's wort (Hypericum perforatum L.). J. Pineal Res. 41(3):284-7.

Ningsih IY. 2014. Pengaruh elisitor biotik dan abiotik pada produksi flavonoid melalui kultur jaringan tanaman. Pharmacy.11(02) : 117-132.

Nugroho LH, Sumardi I, Wisnu M. & Anggraeny RN. 2007. Distribusi dan profil kromatogram minyak atsiri pada temulawak (Curcuma xanthorrhiza Roxb.) yang ditumbuhkan secara in vitro dan in vivo. Berkala Ilmiah Biologi. 6(2): 87-95.

Pacurar DI, Perrone I & Bellini C. 2014. Auxin is a central player in the hormone crosstalks that control adventitious rooting. Physiol. Plant. 151 : 83–96.

Park SH, Elhiti M, Wang H, Xu A, Brown D & Wang A. 2017. Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene. Sci Hort. 226 :250–260.

Pubchem. 2018a. Quercetin. https://pubchem.ncbi.nlm.nih.gov/compound/quercetin#section=Top [23 Juli 2018].

Pubchem. 2018b. Quercitrin. https://pubchem.ncbi.nlm.nih.gov/compound/quercitrin#section=Top [23 Juli 2018].

Pubchem. 2018c. Isoamyl Salicylate. https://pubchem.ncbi.nlm.nih.gov/compound/Isoamyl_salicylate#section=Top [23 Juli 2018].

Purnamaningsih R & Ashrina M. 2011. Pengaruh BAP dan NAA terhadap induksi kalus dan kandungan artemisinin dari Artemisia annua L. J. Berita Biologi .10(4).

Purwianingsih W, Febri S & Kusdianti. 2016. Formation flavonoid secondary metabolites in callus culture of Chrysanthemum cinerariefolium as alternative provision medicine. AIP ConferenceProceedings.1708, 030005. doi: 10.1063/1.4941150.

Ramdan R, Handaji N, Beyahia H & Ibriz M. 2014. Influence of growth regulators on callus induction from embryos of five citrus rootstocks. Journal of Applied Biosciences. 73:5959– 5965.

Rout GR. 2006. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul. 48: 111–117.

Saifudin Azis. 2014. Senyawa Alam Metabolit Sekunder: Teori, Konsep, dan Teknik Pemurnian. Yogyakarta: Penerbit Deepublish.

Siahsar B, Rahimi M, Tavassoli A & Raissi A. 2011. Application of biotechnology in production of medicinal plants. American-Eurasian J. Agric. & Environ. Sci.11 (3): 439-444.

Siddique AB & Islam SMS. 2015. Effect of light and dark on callus induction and regeneration in tobacco (Nicotiana tabacum L.). Bangladesh J. Bot. 44(4): 643-651.
Published
2020-01-21
How to Cite
SETIAWATI, Tia et al. Analysis of Secondary Metabolites of Shoot, Callus Culture and Field Plant of Chrysanthemum morifolium Ramat. Jurnal ILMU DASAR, [S.l.], v. 21, n. 1, p. 1-10, jan. 2020. ISSN 2442-5613. Available at: <https://jurnal.unej.ac.id/index.php/JID/article/view/8665>. Date accessed: 25 apr. 2024. doi: https://doi.org/10.19184/jid.v21i1.8665.
Section
General