Effects of Carbonization Temperature from Activated Carbon of Water Hyacinth on the Flux and Its Ability on Iron Removal

  • Wenny Maulina Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember
  • Frendi Wahyudi Priyanto Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember
  • Artoto Arkundato Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember

Abstract

The synthesis of activated carbon derived from water hyacinth has been successfully carried out as an iron adsorbent in a laboratory-scale water filter design system. In this article, activated carbon derived from water hyacinth is made through a carbonization process at 400°C and 500°C with NaOH as an activating agent. This activated carbon derived from water hyacinth acts as a filter media for purifying well water by assessing the flux, pH and iron removal efficiency before and after filtration. The results showed that the use of activated carbon derived from water hyacinth with a carbonization temperature of 500°C resulted in a water flux value greater than the carbonization temperature of 400°C. The pH value showed no difference between the use of activated carbon derived from water hyacinth (at a carbonization temperature 400°C and 500°C) before and after the filtration process, which was 7.5. Meanwhile, the effectiveness of activated carbon derived from water hyacinth at a carbonization temperature of 500°C as a filtration medium is more optimal in reducing iron levels compared to the use of activated carbon at a carbonization temperature of 400°C with percentage efficiency up to 98.09%.

References

Abuzar SS, Edwin T & Hasibuan ULS. 2015. Kemampuan Batu Apung sebagai Adsorben Penyisihan Logam Besi (Fe) Air Tanah. Jurnal Teknik Lingkungan UNAND. 12(1): 1-9.

Agrawal VR, Vairagade VS & Kedar AP. 2017. Activated Carbon as Adsorbent in Advance Treatement of Wastewater. IOSR Journal of Mechanical and Civil Engineering. 14(4): 36-40.

Asmaningrum HP & Pasaribu YP. 2016. Penentuan Kadar Besi (Fe) dan Kesadahan pada Air Minum Isi Ulang Di Distrik Merauke. Magistra. 3(2): 95-104.

Fauzia IK, Maulina W & Misto. 2018. Kajian Membran Nilon sebagai Filter pada Proses Penjernihan Nira Tebu. Spektra: Jurnal Fisika Dan Aplikasinya. 3(1): 57-66.

Febrina L & Ayuna A. 2014. Studi Penurunan Kadar Besi (Fe) dan Mangan (Mn) Dalam Air Tanah Menggunakan Saringan Keramik. Jurnal Teknologi. 7(1): 36-44.

Fitri N. 2017. Pembuatan Briket dari Campuran Kulit Kopi (Coffea Arabica) dan Serbuk Gergaji dengan Menggunakan Getah Pinus (Pinus Merkusii) sebagai Perekat. Makasar: UIN Alauddin Makasar.

Ghaffour N, Khir T & Jonsson J. 2002. Modeling the Steady State Flux of Oil/Water and Suspended Solids Separation By Cross-Flow Ultrafiltration. The 6th Saudi Engineering Conference, KFUPM. 2: 267-278.

Khaira K. 2013. Penentuan Kadar Besi (Fe) Air Sumur dan Air PDAM dengan Metode Spektrofotometri. Jurnal Sainstek. 5(1): 17-23.

Kusumaningtyas R. 2019. Karakterisasi FTIR dan SEM-EDX Arang Aktif Eceng Gondok Berdasarkan Variasi Suhu Karbonisasi. Jember: Universitas Jember.

Maharani NE & Wartini, W. 2017. Efektivitas Filter Serpihan Marmer Terhadap Penurunan Kadar Besi, Mangan dan Magnesium pada Air Sumur Gali. Jurnal Kesehatan. 10(1): 1-8.

Martini S & Elfidiah. 2019. Pengolahan Limbah Cair Minyak Kanola Menggunakan Kombinasi Adsorpsi dan Membran Ultrafiltrasi Polimer. Jurnal Kinetika. 10(2): 36-41.

Maulina W, Kusumaningtyas R, Rachmawati Z, Supriyadi, Arkundato A, Rohman L & Purwandari E. 2019. Carbonization Process of Water Hyacinth as an Alternative Renewable Energy Material for Biomass Cook Stoves Applications. IOP Conference Series: Earth and Environmental Science. 239: 1-7.

Mifbakhuddin. 2010. Pengaruh Ketebalan Karbon Aktif sebagai Media Filter terhadap Penurunan Kesadahan Air Sumber Artetis. Eksplanasi. 5(2): 1-11.

Permenkes RI. 2010. Persyaratan Kualitas Air Minum Nomor 492/PERMENKES/PER/IV/2010. Peraturan Menteri Kesehatan Republik Indonesia. 492: 1-10.

Putera RDH. 2012. Ekstraksi Serat Selulosa dari Tanaman Eceng Gondok (Eichornia Crassipes) dengan Variasi Pelarut. Depok: Universitas Indonesia.

Rachmawati Z. 2019. Analisis Struktur Kristal, Ukuran Kristal, Kristal, Kristalinitas, dan Daya Serap Iodin pada Arang Aktif Eceng Gondok berdasarkan Variasi Suhu Karbonisasi. Jember: Universitas Jember.
Said KAM, George GG, Alipah NAM, Ismail NZ & Jama’In RL. 2017. Effect of Activated Carbon in PSF-PEI-Ag Symmetric Membrane. MATEC Web of Conferences. 87: 1-7.

Sangkota VDA, Supriadi & Said I. 2017. Chemical Activation Effect of Water Hyacinth Plant (Eichhornia crassipes) Charcoal on Adsorption of Lead (Pb) Metal. Jurnal Akademika Kimia. 6(1): 48-54.

Setyawan, H. 2012. Kajian Fluks dan Sifat Mekanik Membran Selulosa Asetat yang Didadah Titanium Dioksida. Bogor: Institut Pertanian Bogor.

WHO. 1996. pH in Drinking-water. WHO/SDE/WHO/03.04/12. 2: 1-7.
Published
2023-01-19
How to Cite
MAULINA, Wenny; PRIYANTO, Frendi Wahyudi; ARKUNDATO, Artoto. Effects of Carbonization Temperature from Activated Carbon of Water Hyacinth on the Flux and Its Ability on Iron Removal. Jurnal ILMU DASAR, [S.l.], v. 24, n. 1, p. 75-82, jan. 2023. ISSN 2442-5613. Available at: <https://jurnal.unej.ac.id/index.php/JID/article/view/30710>. Date accessed: 09 feb. 2023. doi: https://doi.org/10.19184/jid.v24i1.30710.
Section
General