Artificial Neural Network Performance on Pakcoy Leaf Fresh Weight Model
Abstract
The growth of leaf biomass can be predicted from an increase in the surface area and thickness of the leaves. Measurements of leaf biomass are approached with the fresh weight of the leaves. The relationship between biomass and leaf surface area commonly performed by regression analysis. The analysis requires assuming linear relationship between dependent variables and independent variables. Artificial Neural Network (ANN) is alternative that can be used to analyze the relationship of leaves and leaf biomass without requiring linear relationships. The research aimed to evaluate ANN performance in determining the fresh weight of pakcoy leaves based on leaf area parameters. Datasets in the study included leaf area datasets and length-width datasets. ANN architecture used Multi Layer Perceptron (MLP) with backpropagation. Ramsey’s test results showed that leaf area datasets is linier model and length-width datasets is nonlinier model. ANN performs well in predicting leaf fresh weight data on both nonlinear and linear models. The best ANN architecture for modeling the leaf fresh weight with leaf area is MLP (1-3-1) while the leaf fresh weight model with length and width is MLP (2-3-1).
References
Das N. 2014. Modeling Develops To Estimate Leaf Area and Leaf Biomass of Lagerstroemia Speciosa in West Vanugach Reserve Forest of Bangladesh. ISRN Forestry. 2014: 1-9.
Fausett L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. In IEEE Transactions on Computers.
Hermawan DD, Widada B & Vulandari RT. 2018. Perbandingan Hasil Panen Padi Dipengaruhi Rata-rata Curah Hujan Atau Irigasi Dengan Model Regresi Nonlinier Kubik di Kabupaten Sukoharjo. Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN). 6(1): 6-10.
Huang W, Ratkowsky DA, Hui C, Wang P, Su J & Shi P. 2019. Leaf Fresh Weight Versus Dry Weight: Which is Better For Describing The Scaling Relationship Between Leaf Biomass and Leaf Area For Broad-Leaved Plants?. Forests. 10(3): 1-19.
Huang W, Su X, Ratkowsky DA, Niklas KJ, Gielis J & Shi P. 2019b. The Scaling Relationships of Leaf Biomass Vs. Leaf Surface Area of 12 Bamboo Species. Global Ecology and Conservation. 20: 1-10.
Izati ARM & Notobroto HB. 2019. Penerapan Metode Artificial Neural Network dalam Peramalan Jumlah Kunjungan Ibu Hamil (K4). Jurnal Biometrika dan Kependudukan. 8(1): 11-20.
Jaya IKD. 2004. Pertumbuhan Dan Hasil Jagung Semi Yang Ditanam Dengan Kerapatan dan Orientasi Berbeda. Agroteksos. 13(4): 196-200.
Kusdarjito C & Suryantini A. 2013. Penggunaan Artificial Neural Network Untuk Pengenalan Pola: Penerimaan dan Pendapatan Petani Tebu. Sosiohumaniora. 15(3): 294-302.
Lubis LS & Buono A. 2012. Pemodelan Jaringan Syaraf Tiruan Untuk Memprediksi Awal Musim Hujan Berdasarkan Suhu Permukaan Laut. Jurnal Ilmu Komputer Agri-informatika. 1(2): 52-61.
Pan S, Liu C, Zhang W, Xu S, Wang N, Li Y, Gao J, Wang Y & Wang G. 2013. The Scaling Relationships Between Leaf Mass and Leaf Area of Vascular Plant Species Change With Altitude. PLOS ONE. 8(10): 1-4.
Pham H. 2019. A New Criterion For Model Selection. Mathematics. 7(12): 1-12.
Prabowo H, Suhartono S & Prastyo DD. 2020. The Performance Of Ramsey Test, White Test and Terasvirta Test in Detecting Nonlinearity. Inferensi. 3(1): 1-12.
Rusdiana RY, Widuri LI & Restanto DP. 2021. Pendugaan Model Luas Daun Tanaman Pakcoy (Brassica rapa L.) Dengan Regresi Kuantil. Agrin. 25(1): 48.
Setiawan SIA. 2011. Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6. ULTIMATICS. 3(2): 23-28.
Somers MJ & Casal JC. 2009. Using Artificial Neural Networks to Model Nonlinearity. Organizational Research Methods. 12(3): 403-417.
Yohannes E, Mahmudy WF & Rahmi A. 2015. Penentuan Upah Minimum Kota Berdasarkan Tingkat Inflasi Menggunakan Backpropagation Neural Network (BPNN). Jurnal Teknologi Informasi dan Ilmu Komputer. 2(1): 34-40.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.