Design and Construction of Electrical Energy Source Panel Based on Thermoelectric Generators on Mild Steel Galvalume
Abstract
A thermoelectric generator (TEG) is a device that converts heat energy into electrical energy. The working principle of this device is based on Seebeck's law, namely this device will produce electrical energy if the cold side and hot side of this device have a temperature difference value of . This device can be used for generator panels whose heat source comes from the sun. The cold side of the TEG is conditioned by utilizing water fluid which is passed over the heatsink. The temperature difference between the hot and cold sides of the TEG generates an electric voltage through the Seebeck effect. The parameters observed in the research on electricity generation using this TEG are voltage, current, electric power, and the temperature difference between the hot and cold sides. The resulting parameter values are as follows; average voltage (0.5495 volts), average electric current strength of 0.04 A, average electric power (0.022 watts). mean temperature difference (16.006 oC). The largest average Seebeck coefficient is 0.0413 V/oC.
References
Chen WH. 2015. Evaluation of Power Generation From Thermoelectric Cooler at Normal and Low-Temperatur Cooling Conditions. Energy for Sustainable Development. 25(1): 8-16
Ghani MU, Ahmad SA & Munir U. 2016. Future Impact of Thermoelectric Devices for Deriving Electricity by Waste Heat Recovery from IC Engine Exhaust. NFC-IEFR Journal of Engineering and Scientific Research. 4(1): 84-90.
Goldsmid HJ. 2010. Introduction to Thermoelectricity. New York: Springer. April. Angewandte Chemie International Edition. 6(11), 951-952.
Hidayat AS. 2005. Konsumsi BBM dan Peluang Pengembangan Energi Alternatif. INOVASI. 5(17): 11-57.
Khalid M, Syukri M & Gapy M. 2016. Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil dengan Menggunakan Termoelektrik. 1(3): 57-62.
Myers & Jur. 2017. Effects of Thermal Energy Harvesting on The Human - Clothing - Environment Microsystem, IOP Conf. Series: Materials Science and Engineering, 254(2017)
Musleh et al. 2017. Thermoelectric Generator Experimental Performance Testing for Wireless Sensor Network Application in Smart Building. Matec Web of Conperences, 120(2017)
Jaziri N, Boughamoura A, Muller J, Mezghani B, Tounsi F & Ismail M. 2020. A Comprehensive Revie of Thermoelectric Generator: Technology And Common Application. Energy Reports, 6(7): 264-287.
Nusa T, Sompie SRUA & Rumbayan EM. 2015. Sistem Monitoring Konsumsi Energi Listrik Secara Real Time Berbasis Mikrokontroler. Teknik Elektro dan Komputer. 4(5): 19-26.
Riandito AR. 2013. Efisiensi Energi Pada Ruang Perpustakaan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia Melalui Optimasi Pencahayaan Alami dan Buatan. Yogyakarta: Universitas Atma Jaya Yogyakarta.
Treado S & Kusuda T. 1981. Solar Radiation and Illumination. Washington DC: National Bureau of Standard. 1151.
Wardoyo. 2016. Studi Karakteristik Pembangkit Listrik Thermoelektrik Melalui Pemanfaatan Panas Knalpot Sepeda Motor Sport 150 cc. Jurnal Konversi Energi dan Manufaktur. 3(2): 70-75.
Widen J & Munkhammar J. 2019. Solar Radiation Theory. Uppsala: Uppsala University.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.