The 32 kDa Outer Membrane Proteins of Klebsiella pneumoniae Acts as A Bacterial Adhesin

  • Dini Agustina Faculty of Medicine, University of Jember
  • M. Ali Shodikin Faculty of Medicine, University of Jember
  • Bima Setia Sandya Nugraha Faculty of Medicine, University of Jember
  • Diana Chusna Mufida Faculty of Medicine, University of Jember
  • Enny Suswati Faculty of Medicine, University of Jember
  • Bagus Hermansyah Faculty of Medicine, University of Jember

Abstract

Klebsiella pneumoniae is a bacterium that often causes infection in the human body. At present K. pneumoniae can resist some of the antibiotics it has associated with modification of one of the virulence factors possessed by K. pneumoniae. One virulence factor of K. pneumoniae as pathogen bacteria is Outer Membrane Protein (OMP). The study of adhesin factors in K. pneumoniae involving hemagglutinin and adhesin proteins that have been found in the OMP 20 kDa and 40 kDa, but there is still no research that discusses the role of 32 kDa OMP as a hemagglutinin protein and adhesin. The purpose of this study is to determine the role of 32 kDa outer membrane of K. pneumoniae as hemagglutinin and adhesin proteins. After isolation of Outer Member Protein (OMP) from the K. pneumoniae, which then carried out a hemagglutination test using mice erythrocyte cells and adhesion test using mice enterocyte cells. The results of the hemagglutination test using mice erythrocyte cells obtained the highest hemagglutination titer for the molecular weight of 32 kDa in titers 1/4. The adhesion index with dilution titer has a significant relationship, with a conversion coefficient of 0,813 which means the dilution titer with the OMP adhesion index has a strong relationship with the direction of a positive relationship. The regression test results obtained an R-value of 0,813 which shows a strong relationship, while the R2 value is 66.1%. Conclusion in this study is 32 kDa outer membrane proteins of K. pneumoniae acts as a bacterial adhesin.

References

Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, Abdollahpour I, Abegaz KH, Abolhassani H, Aboyans V, Abreu LG, Abrigo MRM, Abualhasan A, Abu-Raddad LJ, Abushouk AI, Adabi M, Adekanmbi V, Adeoye AM, Adetokunboh OO & Amini S. 2020. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: a Systematic Analysis for The Global Burden of Disease Study 2019. The Lancet, 396(10258): 1204-1222.

Abrar M, Wibawan IWT, Priosoeryanto BP, Soedarwanto M & Pasaribu FH. 2013. Peranan Hemaglutinin Staphylococcus aureus Dalam Proses Adhesi pada Sel Epitel Ambing Sapi Perah. Indonesian Journal of Veterinary Sciences. 7(1): 43-46.

Agustina D. 2017. Immunoblotting Detection of Immunoglobulin G Post Subcutaneous Immunization of Protein Hemaglutinin Pili Klebsiella pneumoniae 12,8 kDa on Mice BALB/C. Journal of Agromedicine and Medical Sciences. 3(2):40.

Agustina D, Nadyatara K, Mufida DC, Elfiah U, Shodikin MA & Suswati, E. 2020. Faktor Virulensi Outer Membrane Protein 20 kDa Klebsiella pneumoniae sebagai Protein Hemaglutinin dan Adhesin. EJournal Kedokteran Indonesia. 7(3): 200-204.

Ashurst JV & Dawson A. 2021. Pneumonia, klebsiella. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK519004/

Babu L, Uppalapati SR, Sripathy MH & Reddy PN. 2017. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model. Frontiers in Microbiology. 8(SEP).

Brooks GF, Carroll KC, Butel JS, Morse SA & Mietzner TA. 2013. Jawetz, Melnick, & Adelberg’s Medical Microbiology 26th ed. McGraw-Hill Medical.
Choi M, Tennant SM, Simon R & Cross AS. 2019. Progress Towards the Development of Klebsiella vaccines. Expert Review of Vaccines. 18(7): 681.

Clegg S & Murphy CN. 2016. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiology Spectrum. 4(1).
Di Martino P, Bertin Y, Girardeau JP, Livrelli V, Joly B & Darfeuille-Michaud A. 1995. Molecular Characterization and Adhesive Properties of CF29K, an Adhesin of Klebsiella pneumoniae strains Involved in Nosocomial Infections. Infection and Immunity. 63(11): 4336.

Finka R, Agustina D, Rachmawati DA, Suswati E, Mufida DC & Shodikin A. 2019. The Role of Pili Protein 38,6 kDa Klebsiella pneumoniae as a Hemagglutinin and Adhesin Protein which Serves as a Virulence Factor. Journal of Agromedicine and Medical Sciences. 5(2): 9.

Fitrianingsih AA. 2017. Haemaglutination of Shigella flexneri Subunit Pili Protein 18 Kda as A Molecule Adhesion in Mice Enterocytes. Journal of Islamic Pharmacy. 2(1): 22-29.

Hussein KE, Bahey-El-Din M & Sheweita SA. 2018. Immunization with the Outer Membrane Proteins OmpK17 and OmpK36 Elicits Protection Against Klebsiella pneumoniae in The Murine Infection model. Microbial Pathogenesis. 119: 12-18.

Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, Reed C, Grijalva CG, Anderson EJ, Courtney DM, Chappell JD, Qi C, Hart EM, Carroll F, Trabue C, Donnelly HK, Williams DJ, Zhu Y, Arnold SR & Finelli L. 2015. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England Journal of Medicine. 373(5): 415-427.

Jain V, Vashisht R, Yilmaz G & Bhardwaj A. 2021. Pneumonia Pathology. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK526116/

Kennedy DA & Read AF. 2017. Why Does Drug Resistance Readily Evolve but Vaccine Resistance Does Not? Proceedings of the Royal Society B: Biological Sciences. 284(1851).

Klugman KP & Black S. 2018. Impact of Existing Vaccines in Reducing Antibiotic Resistance: Primary and Secondary Effects. Proceedings of the National Academy of Sciences of the United States of America. 115(51): 12896-12901.

Lee WH, Choi HIl, Hong SW, Kim KS, Gho YS & Jeon SG. 2015. Vaccination with Klebsiella pneumoniae-Derived Extracellular Vesicles Protects Against Bacteria-induced Lethality via Both Humoral and Cellular Immunity. Experimental & Molecular Medicine. 47(9).

Letourneau J, Levesque C., Berthiaume F, Jacques M & Mourez M. 2011. In Vitro Assay of Bacterial Adhesion Onto Mammalian Epithelial Cells. Journal of Visualized Experiments. 51: e2783.

Li B, Zhao Y, Liu C, Chen Z & Zhou D. 2014. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiology. 9(9): 1071-1081.

Li X, Johnson DE & Mobley HLT. 1999. Requirement of MrpH for Mannose-resistant Proteus-like Fimbria-mediated Hemagglutination by Proteus mirabilis. Infection and Immunity. 67(6): 2822-2833.

Mędrzycka-Dąbrowska W, Lange S, Zorena K, Dąbrowski S, Ozga D & Tomaszek L. 2021. Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients. A Scoping Review. Journal of Clinical Medicine. 10(10): 2067.

Murray P, Rosenthal K & Pfaller M. 2013. Medical Microbiology (M. Murray, PR, Rosenthal, KS, dan Pfaller; 7th Ed). Elsevier Saunders.

Nagayama K, Oguchi T, Arita M & Honda T. 1995. Purification and Characterization of a Cell-associated Hemagglutinin of Vibrio Parahaemolyticus. Infection and Immunity. 63(5): 1987.

Navon-Venezia S, Kondratyeva K & Carattoli A. 2017. Klebsiella pneumoniae: a Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiology Reviews. 41(3): 252-275.

Noorhamdani N. 2013. Protein Fimbria 16 Kda Bakteri Acinetobacter baumannii dari Urin Penderita Infeksi Saluran Kemih Berperan Sebagai Protein Hemaglutinin dan Adhesin. Jurnal Kedokteran Brawijaya. 21(1): 44-53.

Paczosa MK & Mecsas J. 2016. Klebsiella pneumoniae: Going on The Offense with A Strong Defense. Microbiology and Molecular Biology Reviews. 80(3): 629-661.

Pardi R. 2010. Signal Transduction, Adhesion Receptors Learn Science at Scitable. https://www.nature.com/scitable/topicpage/signal-transduction-by-adhesion-receptors-14266214/

Pertiwi W, Sartono TR, Adi S & Prawiro SR. 2009. Sensitivitas dan Spesifisitas Metode Dot Blot menggunakan Antigen Outer Membrane Protein Klebsiella pneumoniae yang Direspon Secretory-Immunoglobulin A Sputum Penderita Terinfeksi Klebsiella pneumoniae. J Respir Indones. 29(3).

Pichavant M, Delneste Y, Jeannin P, Fourneau C, Brichet A, Tonnel AB & Gosset P. 2003. Outer Membrane Protein A from Klebsiella pneumoniae Activates Bronchial Epithelial Cells: Implication in Neutrophil Recruitment. Journal of Immunology (Baltimore, Md. : 1950). 171(12): 6697-6705.

Poolman JT. 2020. Expanding The Role of Bacterial Vaccines into Life-course Vaccination Strategies and Prevention of Antimicrobial-resistant Infections. Npj Vaccines. 5(1): 1-12.

Ryu WS. 2016. Molecular Virology of Human Pathogenic Viruses. In Molecular Virology of Human Pathogenic Viruses. Elsevier Inc.

Sahly H, Keisari Y, Crouch E, Sharon N & Ofek I. 2008. Recognition of Bacterial Surface Polysaccharides by Lectins of the Innate Immune System and Its Contribution to Defense against Infection: the Case of Pulmonary Pathogens. Infection and Immunity. 76(4): 1322.

Saimin J, Hartati, Purnamasari Y, Mulyawati SA, Tien & Aritrina P. 2020. Microbiological and Biochemical Contamination Analysis of Refilled Drinking-water in Abeli, Kendari, Southeast Sulawesi. The Indonesian Biomedical Journal. 12(2): 124-129.

Shareef AH, Abdulla TE & Mostafa NZ. 2010. Hemagglutination Properties of Some Intestinal Bacterial Pathogens Isolated From Clinical Samples. Tikrit Journal of Pure Science. 15(3).

Susilo J, Sartono TR & Sumarno S. 2013. Deteksi Bakteri Klebsiella pneumoniae pada Sputum dengan Metode Imunositokimia Menggunakan Anti Outer Membrane Protein Berat Molekul 40 Kda Klebsiella pneumoniae sebagai Antibodi. Jurnal Kedokteran Brawijaya. 20(1): 12-18.

Tankeshawr A. 2021. IMViC Tests: Principle, Procedure, Results • Microbe Online. https://microbeonline.com/imvic-tests-principle-procedure-and-results/

Torres A, Cilloniz C, Niederman MS, Menéndez R, Chalmers JD, Wunderink RG & van der Poll T. 2021. Pneumonia. Nature Reviews Disease Primers. 7(1): 1-28.

Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Swartz S, Fullman N, Mosser J, Thompson RL, Reiner RC, Abajobir A, Alam N, Alemayohu MA, Amare AT, Antonio CA, Asayesh H, Avokpaho E, Barac A, Beshir MA & Mokdad AH. 2017. Estimates of the Global, Regional, and National Morbidity, Mortality, and Eetiologies of Lower Respiratory Tract Infections in 195 Countries: A Systematic Analysis for The Global Burden of Disease Study 2015. The Lancet Infectious Diseases. 17(11): 1133-1161.

Vading M, Nauclér P, Kalin M & Giske CG. 2018. Invasive infection caused by Klebsiella pneumoniae is A Disease Affecting Patients with High Comorbidity and Associated with High Long-term Mortality. PLOS ONE. 13(4): e0195258.

WHO. 2021. Pneumonia. WHO. https://www.who.int/news-room/fact-sheets/detail/pneumonia

Wright M, Suzuki Y, Jones M, Marshall S, Rudin S, van Duin D, Kaye K, Jacobs M, Bonomo R & Adams M. 2015. Genomic and Transcriptomic Analyses of Colistin-resistant Clinical Isolates of Klebsiella pneumoniae Reveal Multiple Pathways of Resistance. Antimicrobial Agents and Chemotherapy. 59(1): 536-543.

Wyres KL & Holt KE. 2018. Klebsiella pneumoniae as A Key Trafficker of Drug Resistance Genes from Environmental to Clinically Important Bacteria. Current Opinion in Microbiology. 45: 131-139.
Published
2022-07-27
How to Cite
AGUSTINA, Dini et al. The 32 kDa Outer Membrane Proteins of Klebsiella pneumoniae Acts as A Bacterial Adhesin. Jurnal ILMU DASAR, [S.l.], v. 23, n. 2, p. 113-120, july 2022. ISSN 2442-5613. Available at: <https://jurnal.unej.ac.id/index.php/JID/article/view/25435>. Date accessed: 10 aug. 2022. doi: https://doi.org/10.19184/jid.v23i2.25435.
Section
General