A C3 Magic Decomposition on Friendship Graph with Odd Order
Abstract
Let G = (V,E) is graph with a non-empty set V containing vertices and a set of edges E. Also note that if H = {H_i⊆G_i = 1,2,3,...,n} is a collection of subgraphs from G with H_i≅Hj,i ≠ j. If Hi ∩ Hj = ∅ and ⋃n(i-1)Hi = G, then graph G admits a decomposition H. Furthermore, if there are f(v) and g(e) which are vertices and edges labeling at G, the total weight of each subgraph H_i,i = 1,2,3,…,n has the same value, namely ∑_(v∈V(H_i))▒〖f(v)〗+∑_(e∈E(H_i))▒〖g(e)〗= w, then the graph G contains the magic H_i decomposition with w as the magic constant. This research shows that the friendship graph F_n with n = 2k + 1 for k∈N admits a magic -(a,d)-C_3 decomposition with a magic constant w of 29dk + 6a + 15d.
References
Bartle Robert & Sherbert Donald. 2011. Introduction to Real Analysis 4th Edition. New York: John Wiley and Sons, Inc.
Chartrand, Gery & L. Lesniak. 1996. Graphs and Digraphs Third Edition. Boca Raton-Florida: Chapman Hall/CRC.
Chartrand, Gery & P. Zhang. 2005. Introduction to Graph Theory. Singapore: McGraw-Hill.
Darmaji. 2011. Dimensi Partisi Graf Multipartit dan Graf Hasil Korona Dua Graf Terhubung. [Tesis] Sekolah Pascasarjana Institut Teknologi Bandung (ITB).
Hendy. 2016. The H- super (anti) magic Decomposition of Antiprism graphs, AIP Conference Proceedings 1707. 020007.
Hendy, Kiki A. Sugeng, A.N.M. Salman, Nisa Ayunda. 2018. Another H-super Magic Decompositions of The Lexicographic Product of Graphs. Indonesian Journal of Combinatorics. 2(2): 72-78.
Hendy, A. N. Mudholifah, K. A. Sugeng, Martin Bača & Andrea Semaničová-Feňovčíková. 2020. On H-antimagic Decomposition of Toroidal Grids and Triangulations. AKCE International Journal of Graphs and Combinatorics. 17(3): 761-770.
Inayah N, A Llado & J Moragas. 2012. Magic and Anti-Magic H- Decompositions, Discrete Mathematic. 312(1367-1371).
Masyitoh Soffi N. 2019. Dekomposisi (a,d)-P_4- Antiajain Pada Graf Generelized Peterson GP(n,3). [Skripsi] UIN Syarif Hidayatullah Jakarta, Jakarta.
Munir R. 2014. Matematika Diskrit Edisi Ketiga. Bandung: Informatika Bandung.
Pancahayani Sigit. 2017. Dekomposisi Super Ajaib Berbentuk Lintasan dari Amalgamasi Graf Siklus. Jurnal Matematika dan Pendidikan Matematika. 2(2): 128-133.
Rahmawati Nur & Budi Rahajeng. 2014. Dekomposisi Graf Sikel, Graf Roda, Graf Gir dan Graf Persahabatan. MathHunesa, 3(3): 64-71.
Rosen KH. 2012. Discrete Mathematics and Its Application. New York: McGraw-Hill.
Simangunsong JW & Mulyono. 2015. Pelabelan Total Titik Ajaib pada Graf Petersen yang Diperumum. Karismatika. 3(11-24).
Solairaju, A dan Shoba, B. 2017. Super Magic and Arithmetic Labelings of the Graphs P_3×P_n and C_3×C_2n. Global Journal of Pure and Applied Mathematics. 13(5): 1365-1374.
Wilson Robin J & Walkins John J. 1990. Graphs an Introductory Approach: A First Course in Discrete Matematic. New York: John Wiley & Sons, Inc.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.