NILAI KETAKTERATURAN TOTAL SISI DARI GRAF SIPUT

  • Shapbian Novindasari
  • S Slamin
  • D Dafik

Abstract

Abstract. Let G=(V,E) be a simple graph, a labeling is called an edge irregular total k-labelling of G if for any two different edges e and f of G there is, . The total edge irregularity strength denoted by tes G is the smallest positive integer k for which G has an edge irregular total k-labelling. In this paper, we will determine the total edge irregularity strengths of a Snail graph, the union isomorphic and non-isomorphic union of Snail graph, and shackle graph of Snail graph. We show that , for , , for and , , for where natural numbers, and , for and

Key Words: Total edge irregular labeling, Total edge irregularity strength, Snail graph.

 


Author Biography

Shapbian Novindasari

NILAI KETAKTERATURAN TOTAL SISI DARI GRAF SIPUT

Shapbian Novindasari[1], Slamin[2], Dafik[3]

Abstract. Let G=(V,E) be a simple graph, a labeling is called an edge irregular total k-labelling of G if for any two different edges e and f of G there is, . The total edge irregularity strength denoted by tes G is the smallest positive integer k for which G has an edge irregular total k-labelling. In this paper, we will determine the total edge irregularity strengths of a Snail graph, the union isomorphic and non-isomorphic union of Snail graph, and shackle graph of Snail graph. We show that , for , , for and , , for where natural numbers, and , for and

Key Words: Total edge irregular labeling, Total edge irregularity strength, Snail graph.

 


[1] Mahasiswa Program Studi Pendidikan Matematika FKIP Universitas Jember

[2] Dosen Program Studi Sistem Informasi Universitas Jember

[3] Dosen Program Studi Pendidikan Matematika FKIP Universitas Jember

Published
2015-04-01
How to Cite
NOVINDASARI, Shapbian; SLAMIN, S; DAFIK, D. NILAI KETAKTERATURAN TOTAL SISI DARI GRAF SIPUT. Kadikma, [S.l.], v. 6, n. 1, apr. 2015. ISSN 2686-3243. Available at: <https://jurnal.unej.ac.id/index.php/kadikma/article/view/1833>. Date accessed: 22 nov. 2024. doi: https://doi.org/10.19184/kdma.v6i1.1833.
Section
Articles