# MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI

• Saltina Saltina Program Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo
• Novianita Achmad Program Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo
• Resmawan Resmawan Program Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo
• Agusyarif Rezka Nuha Program Studi Matematika, Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo

### Abstract

The present work discusses a mathematical model of diphtheria transmission. Diphtheria is an infection of the throat and upper respiratory tract that is caused by bacteria called corynebacterium. The model was developed by adding latent population and death parameter resulted from this infection. The purpose of this study was to construct a mathematical model, analyze the stability of the equilibrium point, and interpret the simulation of the SEIQR mathematical model in the trasnsmission of diphteria. From the constructed model, there were bacis reproduction number ()  and two equilibrium points, namely disease-free and endemic equilibrium point would be stable if   and ,  respectively. Moreover, a nunerical simulation was carried out to determine the dynamics of the diphteria  transmission. The simulation results showed that if the rates of vaccinated propotion and individual are increased, the infaction woud grandually go away from the population. In short, diphteria transmission be prevented by increasing the rate of vaccnation.
Keywords: Basic reproduction number, Diphtheria, Equilibrium point, Mathematical model, Numerical simulation
MSC2020: 37A99, 37A10, 37C10

Published
2022-03-13
How to Cite
SALTINA, Saltina et al. MODEL MATEMATIKA TIPE SEIQR PADA PENYEBARAN PENYAKIT DIFTERI. Majalah Ilmiah Matematika dan Statistika, [S.l.], v. 22, n. 1, p. 14-29, mar. 2022. ISSN 2722-9866. Available at: <https://jurnal.unej.ac.id/index.php/MIMS/article/view/29337>. Date accessed: 07 july 2022. doi: https://doi.org/10.19184/mims.v22i1.29337.
Citation Formats
Section
Articles