Pelabelan Total Super $(a,d)$-sisi Antimagic pada Gabungan Saling Lepas Graf Bintang dengan Teknik Pewarnaan Titik
Abstract
For a graph $G=(V,E)$, a bijection $f$ from $V(G) \cup E(G)$ into $\{1, 2,3,\ldots,$ $|V(G)|+|E(G)|\}$ is called ($a$,$d$)-edge-antimagic totalĀ labeling of $G$ if the edge-weights $w(xy) = g(x) + g(y) + g(xy), xy \in E(G)$, form an arithmetic progression starting from $a$ and having common difference $d$. An ($a$,$d$)-edge-antimagic total labeling is called super ($a$,$d$)-edge-antimagic total labeling if $g(V(G))= \{1, 2,\ldots,|V(G)|\}$. A vertex coloring is an assignment of labels or colors to each vertex of a graph such that there is no two adjacent vertices have the same colors. We can use vertex coloring technique to label the vertices of a graph such that it has EAV-weight. Furthermore, If we have an EAV-weight of $S_n$, we can construct a super $(a,d)$-edge antimagic total labeling of Star Graph, either simple or disjoint union of this graph.
Published
2014-11-19
How to Cite
WARDANI M, Devi Eka; DAFIK, Dafik.
Pelabelan Total Super $(a,d)$-sisi Antimagic pada Gabungan Saling Lepas Graf Bintang dengan Teknik Pewarnaan Titik.
Prosiding Seminar Matematika dan Pendidikan Matematik, [S.l.], v. 1, n. 5, nov. 2014.
Available at: <https://jurnal.unej.ac.id/index.php/psmp/article/view/973>. Date accessed: 22 nov. 2024.
Section
Prosiding Seminar Nasional Matematika 2014