Super (a,d)-Edge-antimagic Total Labeling of Shackle of Fan Graph

Wicha Dwi Vikade ${ }^{1,2}$, Dafik ${ }^{1,3}$
${ }^{1}$ CGANT- University of Jember
${ }^{2}$ Department of Mathematics FMIPA University of Jember
${ }^{3}$ Department of Mathematics Education FKIP University of Jember, (wicha180790,d.dafik)@gmail.com

Abstract

A graph G of order p and size q is called an (a, d)-edge-antimagic total if there exist a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that the edge-weights, $w(u v)=f(u)+f(v)+f(u v), u v \in E(G)$, form an arithmetic sequence with first term a and common difference d. Such a graph G is called super if the smallest possible labels appear on the vertices. In this paper we study super (a, d)-edge-antimagic total properties of connected of shackle of Fan Graph. The result shows that shackle of Fan Graph admit a super edge antimagic total labeling for $d \in 0,1,2$ for $n \geq 1$. It can be concluded that the result of this research has convered all the feasible n, d.

Key Words :(a,d)-edge-antimagic total labeling, super (a, d)-edge-antimagic total labeling, Fan Graph.

Introduction

Defnitions of (a,d)-EAT labeling and super (a,d)-EAT labeling were introduced by Simanjuntak at al [7]. These labelings are natural extensions of the notion of edge- magic labeling, dened by Kotzig and Rosa [6], where edge-magic labeling is called magic valuation, and the notion of super edge-magic labeling, is natural extension of the notion of edge-magic labeling dened by Kotzig and Rosa [6]. The super (a, d)-edge-antimagic total labeling [8] is natural extension of the notion of super edge-magic labeling. For more information about graph can be found in [1],[3],[4],[2],[5]. In this paper we will now concentrate on the connected shackle of Fan graph denoted by \mathbb{F}_{n}. The example of figure 1.

Super (a, d)-edge Antimagic Total Labeling

An (a, d)-edge-antimagic total labeling on a graph G is a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots p+q\}$ with the property that the edge-weights $w(u v)=f(u)+f(u v)+f(v) ; u v \epsilon E(G)$, form an arithmetic progression $\{a, a+$ $b, a+2 b, \ldots, a+(q-1) d\}$, where $a>1$ and $d \geq 0$ are two fixed integers. If such a labeling exists then G is said to be an (a, d)-edge-antimagic total graph. Such a graph G is called super if the smallest possible labels appear on the vertices.

Figure 1:

Thus, a super (a, d)-edge-antimagic total graph is a graph that admits a super (a, d)-edgeantimagic total labeling.

Shackle of fan graph denoted by \mathbb{F}_{n} with $n \geq 1$ is a connected graph with vertex set. $V\left(\mathbb{F}_{n}\right)=\left\{x_{i}, y_{j}, z_{i} ; 1 \leq i \leq n ; 1 \leq j \leq m ; m, n \epsilon N\right\}$ and $E\left(\mathbb{F}_{n}\right)=$ $\left\{x_{i} y_{i}, x_{i} y_{i+1}, y_{i} z_{i}, z_{i} z_{i+1}, z_{i} y_{i+1} ; 1 \leq j \leq n \cup y_{j} y_{j+1} ; 1 \leq j \leq m\right\}$. Thus $\left|V\left(\mathbb{F}_{n}\right)\right|=\mathrm{p}=3 n+$ 1 and $\left|E\left(\mathbb{F}_{n}\right)\right|=\mathrm{q}=6 n-1$.

We continue this section by a necessary condition for a graph to be super (a, d)-edge antimagic total, providing a least upper bound for feasible values of d.

Lemma 1 If $a(p, q)$-graph is super (a, d)-edge-antimagic total then $d \leq \frac{2 p+q-5}{q-1}$
Proof Assume that a (p, q)-graph has a super (a, d)-edge-antimagic total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$. The minimum possible edge-weight in the labeling f is at least $1+2+p+1=p+4$. Thus, $a \geq p+4$. On the other hand, the maximum possible edge-weight is at most $(p-1)+p+(p+q)=3 p+q-1$. So we obtain $a+(q-1) d \leq 3 p+q-1$ which gives the desired upper bound for
the difference d. Or we can write:

$$
\begin{align*}
& \Leftrightarrow \quad a+(q-1) d \leq 3 p+q-1 \\
& \Leftrightarrow \quad(p+4)+(q-1) d \leq 3 p+q-1 \\
& \Leftrightarrow \quad d \leq \frac{3 p+q-1-(p+4)}{q-1} \\
& \Leftrightarrow \quad d \leq \frac{2 p+q-5}{q-1} \\
& \Leftrightarrow \quad d \leq \frac{2(3 n+1)+(6 n-1)-5}{(6 n-1)-1} \\
& \Leftrightarrow \quad d \leq \frac{6 n+2+6 n-6}{6 n-2} \\
& \Leftrightarrow \quad d \leq \frac{12 n-4}{6 n-2} \\
& \Leftrightarrow \quad d \leq 2 \\
& \Leftrightarrow \quad d \in\{0,1,2\} \tag{1}
\end{align*}
$$

Lemma $2 A(p, q)$-graph G is super edge-magic if and only if there exists a bijective function $f: V(G) \rightarrow\{1,2, \ldots, p\}$ such that the set $S=\{f(u)+f(v)$: $u v \in E(G)\}$ consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with magic constant $a=p+q+m$, where $m=\min (M)$ and $S=\{a-(p+1), a-(p+2), \ldots, a-(p+q)\}$.

The two above lemma will be used for develop theorem 1.

Result

If shackle of Fan graph has a super (a, d)-edge-antimagic total labeling then for $p=3 n+1$ and $q=6 n-1$ it follows from Lemma 1 that the upper bound of d is $d \leq 2$ or $d \in\{0,1,2\}$. The following Lemma describes an $a, 1$-edge-antimagic vertex labeling for shackle of Fan graph.

Lemma 3 If $n \geq 1$, then the Shackle of Fan graph \mathbb{F}_{n} has an $(a, 1)$-edgeantimagic vertex labeling.

Proof. Define the vertex labeling $f_{1}: V\left(\mathbb{F}_{n}\right) \rightarrow\{1,2, \ldots, 3 n+1\}$ in the

$$
\begin{aligned}
& f_{1}\left(x_{i}\right)=3 i, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
& f_{1}\left(x_{i}\right)=3 i-1, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number }
\end{aligned}
$$

following way: $f_{1}\left(y_{i}\right)=3 j-2$, for $1 \leq j \leq m$

$$
\begin{aligned}
& f_{1}\left(z_{i}\right)=3 i-1, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
& f_{1}\left(z_{i}\right)=3 i \text {, for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number }
\end{aligned}
$$

The vertex labeling f_{1} is a bijective function. The edge-weights of \mathbb{F}_{n},
under the labeling f_{1}, constitute the following sets

$$
\begin{array}{ll}
w_{f_{1}}\left(x_{i} y_{i}\right) & =5 i-1, \text { for } 1 \leq j \leq n, \\
w_{f_{1}}\left(x_{i} y_{i+1}\right) & =6 i+1, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
w_{f_{1}}\left(x_{i} y_{i+1}\right) & =6 i, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
w_{f_{1}}\left(y_{i} z_{i}\right) & =6 i-3, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
w_{f_{1}}\left(y_{i} z_{i}\right) & =6 i-2, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
w_{f_{1}}\left(z_{i} z_{i+1}\right) & =6 i+2, \text { for } 1 \leq i \leq n, \\
w_{f_{1}}\left(z_{i} y_{i+1}\right) & =6 i, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
w_{f_{1}}\left(z_{i} y_{i+1}\right) & =6 i+1, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
w_{f_{1}}\left(y_{j} y_{j+1}\right) & =6 j-1, \text { for } 1 \leq j \leq m,
\end{array}
$$

It is not difficult to see that the set $w_{f_{1}}=\{3,4,5, \ldots, 6 n-1\}$ consists of consecutive integers. Thus f_{1} is a $(3,1)$-edge antimagic vertex labeling.

Bača, Y. Lin, M. Miller and R. Simanjuntak [5], Theorem 5) have proved that if (p, q)-graph G has an (a, d)-edge antimagic vertex labeling then G has a $\operatorname{super}(a+p+q, d-1)$-edge antimagic total labeling and a super $(a+p+1, d+1)$ edge antimagic total labeling. With the theorem Lemma 3 in hand, we obtain the following result.
\diamond Teorema 1 If $n \geq 1$ then the graph \mathbb{F}_{n} has a super $(9 n+3,0)$-edge-antimagic total labeling and a super ($3 n+5,2$)-edge-antimagic total labeling.

Proof.

Case 1. $d=0$
We have proved that the vertex labeling f_{1} is a $(3,1)$-edge antimagic vertex labeling. With respect to Lemma 2 , by completing the edge labels $p+1, p+2, \ldots, p+q$, we are able to extend labeling f_{1} to a super ($a, 0$)-edge-antimagic total labeling, where, for $p=3 n+1$ and $q=6 n-1$, the value $a=9 n+3$.

Case 2. $d=2$
Label the vertices of \mathbb{F}_{n} with f_{3} that the edge labeling for $d=2$, so we can that
label the edges with the following way.

$$
\begin{array}{ll}
f_{3}\left(x_{i} y_{i}\right) & =3 n+6 i-3, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{3}\left(x_{i} y_{i}\right) & =3 n+6 i-4, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{3}\left(x_{i} y_{i+1}\right) & =3 n+6 i \text {, for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{3}\left(x_{i} y_{i+1}\right) & =3 n+6 i-1, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{3}\left(y_{i} z_{i}\right) & =3 n+6 i-4, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{3}\left(y_{i} z_{i}\right) & =3 n+6 i-3, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{3}\left(z_{i} z_{i+1}\right) & =3 n+6 i+1, \text { for } 1 \leq i \leq n, \\
f_{3}\left(z_{i} y_{i+1}\right) & =3 n+6 i-1, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{3}\left(z_{i} y_{i+1}\right) & =3 n+6 i, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{3}\left(y_{j} y_{j+1}\right) & =3 n+6 j-2, \text { for } 1 \leq j \leq m,
\end{array}
$$

The total labeling f_{3} is a bijective function from $V\left(\mathbb{F}{ }_{n}\right) \cup E\left(\mathbb{F}{ }_{n}\right)$ onto the set $\{1,2,3, \ldots, 3 n+1\}$. The edge-weights of $\mathbb{F}{ }_{n}$, under the labeling f_{3}, constitute the sets

$$
\begin{aligned}
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(x_{i} y_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+11 i-4 \text { and } \mathrm{i} \epsilon \text { odd number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(x_{i} y_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+11 i-5 \text { and } \mathrm{i} \epsilon \text { even number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(x_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12+1 \text { and } \mathrm{i} \epsilon \text { odd number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(x_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12 i-1 \text { and } \mathrm{i} \epsilon \text { even number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(y_{i} z_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12-7 \text { and } \mathrm{i} \epsilon \text { odd number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(y_{i} z_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12 i-5 \text { and } \mathrm{i} \epsilon \text { even number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(z_{i} z_{i+11}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12 i+3 \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(z_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12 i-1 \text { and } \mathrm{i} \epsilon \text { odd number } \\
& W_{f_{3}}=\left\{w_{f_{3}}+f_{3}\left(z_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=3 n+12 i+1 \text { and } \mathrm{i} \epsilon \text { even number } \\
& W_{f_{3}}=\left\{w_{f 3}+f_{3}\left(y_{j} y_{j+1}\right) ; \text { and } 1 \leq j \leq m\right\}=3 n+12 j-3
\end{aligned}
$$

It is not difficult to see that the set $W_{f_{3}}=\{3 n+5,3 n+7,3 n+9,, \ldots, 15 n+$ 1\} contains an arithmetic sequence with $a=3 n+5$ and $d=2$. Thus f_{3} is a super $(3 n+5,2)$-edge-antimagic total labeling. This concludes the proof.

Theorem 2 If $n \geq 1$, then the graph \mathbb{F}_{n} has a super $(6 n+4,1)$-edgeantimagic total labeling.

Proof. Label the vertices of $\mathbb{F}{ }_{n}$ with $f_{4}\left(x_{i} y_{i}\right)=f_{1}\left(x_{i} y_{i}\right), f_{4}\left(x_{i} y_{i+1}\right)=$ $f_{1}\left(x_{i} y_{i+1}\right), f_{4}\left(y_{i} z_{i}\right)=f_{1}\left(y_{i} z_{i}\right), f_{4}\left(z_{i} z_{i+1}\right)=f_{1}\left(z_{i} z_{i+1}\right), f_{4}\left(y_{j} y_{j+1}\right)=f_{1}\left(y_{j} y_{j+1}\right)$, $f_{4}\left(z_{i} y_{i+1}\right)=f_{1}\left(z_{i} y_{i+1}\right)$ untuk $1 \leq i \leq n, 1 \leq j \leq m$ and label the edges with the
following way.

$$
\begin{array}{ll}
f_{4}\left(x_{i} y_{i}\right) & =9 n-3 i+3, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{4}\left(x_{i} y_{i}\right) & =6 n-3 i+4, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{4}\left(x_{i} y_{i+1}\right) & =6 n-3 i+5, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{4}\left(x_{i} y_{i+1}\right) & =9 n-3 i+2, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{4}\left(y_{i} z_{i}\right) & =6 n-3 i+4, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{4}\left(y_{i} z_{i}\right) & =9 n-3 i+3, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{4}\left(z_{i} z_{i+1}\right) & =9 n-3 i+1, \text { for } 1 \leq i \leq n, \\
f_{4}\left(z_{i} y_{i+1}\right) & =9 n-3 i+2, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { odd number } \\
f_{4}\left(z_{i} y_{i+1}\right) & =6 n-3 i+2, \text { for } 1 \leq i \leq n \text { and } \mathrm{i} \epsilon \text { even number } \\
f_{4}\left(y_{j} y_{j+1}\right) & =6 n-3 j+3, \text { for } 1 \leq j \leq m,
\end{array}
$$

The total labeling f_{4} is a bijective function from $V\left(\mathbb{F}_{n}\right) \cup E\left(\mathbb{F}_{n}\right)$ onto the set $\{1,2,3, \ldots, 3 n+1\}$. The edge-weights of $\mathbb{F}{ }_{n}$, under the labeling f_{4}, constitute the sets

$$
\begin{aligned}
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(x_{i} y_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=9 n+2 i+2 \text { and } \mathrm{i} \epsilon \text { odd number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(x_{i} y_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=6 n+2 i+3 \text { and } \mathrm{i} \epsilon \text { even number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(x_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=6 n+3 i+6 \text { and } \mathrm{i} \epsilon \text { odd number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(x_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=9 n+3 i+2 \text { and } \mathrm{i} \epsilon \text { even number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(y_{i} z_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=6 n+3 i+1 \text { and } \mathrm{i} \epsilon \text { odd number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(y_{i} z_{i}\right) ; \text { for } 1 \leq i \leq n\right\}=9 n+3 i+1 \text { and } \mathrm{i} \epsilon \text { even number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(z_{i} z_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=9 n+3 i+3 \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(z_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=9 n+3 i+2 \text { and } \mathrm{i} \epsilon \text { odd number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(z_{i} y_{i+1}\right) ; \text { for } 1 \leq i \leq n\right\}=6 n+3 i+3 \text { and } \mathrm{i} \epsilon \text { even number } \\
W_{f_{4}} & =\left\{w_{f_{4}}+f_{4}\left(y_{j} y_{j+1}\right) ; \text { jika } 1 \leq j \leq m\right\}=6 n+3 j+2
\end{aligned}
$$

It is not difficult to see that the set $W_{f_{4}}=\{6 n+4,6 n+5, \ldots, 12 n+2\}$ contains an arithmetic sequence with the first term $8 n+6$ and common difference 1. Thus α_{3} is a super $(6 n+4,1)$-edge-antimagic total labeling. This concludes the proof.

Conclusion

We can conclude that the graph $\mathbb{F}{ }_{n}$ admit a super (a, d)-edge-antimagic total labeling for all feasible d and $n \geq 1$.

References

[1] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math. 60 (2001), 229-239.
[2] Dafik, M. Miller, J. Ryan and M. Bača, Antimagic total labeling of disjoint union of complete s-partite graphs, J. Combin. Math. Combin. Comput., 65 (2008), 41-49.
[3] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math., 309 (2009), 4909-4915.
[4] Dafik, M. Miller, J. Ryan and M. Bača, Super edge-antimagic total labelings of $m K_{n, n, n}$, Ars Combinatoria, 101 (2011), 97-107
[5] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math., 309 (2009), 4909-4915.
[6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13(1970), 451-461.
[7] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms(2000), 179-189.
[8] K.A. Sugeng, M. Miller and M. Baca, Super edge-antimagic total labelings, Utilitas Math., 71 (2006), 131-141.

