On the edge r-dynamic chromatic number of some related graph operations

Novian Nur Fatihah ${ }^{1,3}$, Arika Indah Kriatiana ${ }^{1,2}$, Ika Hesti Agustin ${ }^{1,3}$, Dafik ${ }^{1,2}$
${ }^{1}$ CGANT University of Jember Indonesia
${ }^{2}$ Mathematics Depart. University of Jember Indonesia ${ }^{3}$ Mathematics Edu.
Depart. University of Jember Indonesia
e-mail: novianfatihah@yahoo.com

Abstract

All graphs in this paper are simple, nontrivial, connected and undirected. By an edge proper k-coloring of a graph G, we mean a map c : $E(G) \rightarrow S$, where $|S|=k$, such that any two adjacent edges receive different colors. An edge r-dynamic k-coloring is a proper k-coloring c of G such that $|c(N(u v))| \geq \min (r, d(u)+d(v)-2)$ for each edge $u v$ in $V(G)$, where $N(u v)$ is the neighborhood of $u v$ and $c(S)=c(u v): u v 2 S$ for an edge subset S. The edge r-dynamic chromatic number, written as $\lambda_{r}(G)$, is the minimum k such that G has an edge r-dynamic k-coloring. In this paper, we will determine the edge coloring r-dynamic number of a comb product of some graph, denote by $G \unrhd H$. Comb product of some graph is a graph formed by two graphs G and H, where each edge of graph G is replaced by which one edge of graph H.

Keywords-r-dynamic chromatic number, graph coloring, exponential graphs

INTRODUCTION

Graph theory is part of discrete mathematics which is mostly studied by researchers. This is due to the wide of application in real life. One of the theory developed in graph theory is the coloring. The new extension of graph color is r-dynamic coloring. The r-dynamic chromatic number, introduced by Montgomery [1] and written as $\chi_{r}(G)$, is the least k such that G has an r-dynamic k-coloring. Note that the 1-dynamic chromatic number of graph is equal to its chromatic number, denoted by $\chi(G)$, and the 2 -dynamic chromatic number of graph has been studied under the name a dynamic chromatic number, denoted by $\chi_{d}(G)$. In [1], he conjectured $\chi_{2}(G) \leq \chi(G)+$ 2 when G is regular, which remains open. Akbari et.al. [2] proved Montgomery's conjecture for bipartite regular graphs, as well as Lai, et.al. [3] proved $\chi_{2}(G) \leq \Delta(G)+1$ for $\Delta(G) \leq 3$ when no component is the 5 -cycle.

By a greedy coloring algorithm, Jahanbekama [4] proved that $\chi_{r}(G) \leq r \Delta(G)+1$, and equality holds for $\Delta(G)>2$ if and only if G is r-regular with diameter 2 and girth 5. They improved the bound to $\chi_{r}(G) \leq \Delta(G)+$ $2 r-2$ when $\delta(G)>2 r \ln n$ and $\chi_{r}(G) \leq \Delta(G)+r$ when $\delta(G)>r^{2} \ln n$.

The following observation is useful to find the exact values of r-dynamic chromatic number.

Observation 1. Let $\delta(G)$ and $\Delta(G)$ be a minimum and maximum degree of a graph G, respectively. Then the followings hold

- $\chi_{r}(G) \geq \min \{\Delta(G), r\}+1$,
- $\chi(G) \leq \chi_{2}(G) \leq \chi_{3}(G) \leq \cdots \leq \chi_{\Delta(G)}(G)$,
- $\chi_{r+1}(G) \geq \chi_{r}(G)$ and if $r \geq \Delta(G)$ then $\chi_{r}(G)=$ $\chi_{\Delta(G)}(G)$.

There are some researches studied this problem, some of them can be found in $[5],[6],[7],[8],[9]$.

THE RESULTS

We are ready to show our main theorems. In this study we used exponential graph, there are two theorems found in this study. These deals with exponential graph $C_{n} \unrhd P_{2}$ and $C_{n} \unrhd C_{m}$.

Theorem 1. Let G be a comb product denote by $C_{n} \unrhd P_{2}$ for $n \geq 3$, the vertex r-dynamic chromatic number is:

$$
\begin{array}{ll}
\chi\left(C_{n} \unrhd P_{2}\right)=\quad & 3, n \text { even } \\
3, n \text { odd }
\end{array}
$$

$$
\begin{gathered}
\chi_{d}\left(C_{n} \unrhd P_{2}\right)=\left\{\begin{array}{l}
3, n=3 k, k \in N \\
4, n \text { otherwise }
\end{array}\right. \\
\chi_{r \geq 3}\left(C_{n} \unrhd P_{2}\right)=\left\{\begin{array}{l}
4, n=3 k, n=4 k, k \in N \\
4, n \text { otherwise } \\
5, n=5 k, k \in N
\end{array}\right.
\end{gathered}
$$

Proof. A comb product of graph $C_{n} \unrhd P_{2}$, for $n \geq 3$, is a connected graph with vertex set $V\left(C_{n} \unrhd P_{2}\right)=\left\{x_{i}, 1 \leq\right.$ $i \leq n\} \cup\left\{y_{i}, 1 \leq i \leq n\right\}$, and edge set $E\left(C_{n}^{P_{2}}\right)$ $=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} y_{i} ; 1 \leq i \leq n\right\}$. The order and size of $C_{n} \unrhd P_{n}, n \geq 3$ are $\mid V\left(C_{n} \unrhd\right.$ $\left.P_{n}\right) \mid=2 n$ and $\left|E\left(C_{n} \unrhd P_{2}\right)\right|=2 n$. A comb product graph
$C_{n} \unrhd P_{2}$ is regular graph of degree 3 , thus $C_{n} \unrhd \square$ P_{2},
$\delta\left(C_{n} \unrhd P_{2}\right)=\Delta\left(C_{n} \unrhd P_{2}\right)=3$. By observation 1, $\chi_{r}\left(C_{n} \unrhd P_{2}\right) \geq \min \left\{\Delta\left(C_{n} \unrhd P_{2}\right), r\right\}=\min \{3, r\}$. To find the exact value of r-dynamic chromatic number of $C_{n} \unrhd P_{2}$, we define three cases, namely $\chi\left(C_{n} \unrhd P_{2}\right), \chi_{2}\left(C_{n} \unrhd P_{2}\right)$ and $\chi_{r \geq 3}\left(C_{n} \unrhd P_{2}\right)$.

For $r=1$, the lower bound $\chi\left(C_{n} \unrhd P_{2}\right) \geq \min \{3,1\}=$ 1 , and for $r=2$, the lower bound $\chi\left(C_{n} \unrhd P_{2}\right) \geq$ $\min \{3,2\}=2$. We will prove that $\chi\left(C_{n} \unrhd P_{2}\right) \leq 3$ by defining a map $c_{1}: V\left(C_{n} \unrhd P_{2}\right) \rightarrow\{1,2, \ldots, k\}$ for $n \geq 3$, by the following:

$$
\begin{aligned}
& 12 \ldots 12, n \text { even } \\
& 123 \ldots 123, n \text { odd }
\end{aligned}
$$

$$
c_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left\{\begin{array}{l}
21 \ldots 21, n \text { even } \\
212 \ldots 212, n \text { odd }
\end{array}\right.
$$

It is easy to see that c_{1} gives $\chi\left(C_{n} \unrhd P_{2}\right) \leq 2$ for n even, but for n odd, we could not avoid to have $\chi\left(C_{n} \unrhd P_{2}\right) \leq 3$, otherwise there are at least two adjacent vertices assigned the same colors. Thus $\chi\left(C_{n} \unrhd P_{2}\right)=2$ for n even and $\chi\left(C_{n} \unrhd P_{2}\right) \leq 3$, for n odd.

For $\chi_{r}\left(C_{n} \unrhd P_{2}\right)$ and $r \geq 3$, the lower bound $\chi_{3}\left(C_{n} \unrhd\right.$ $\left.P_{2}\right) \geq \min \{3,3\}=3$. We will prove that $\chi_{3}\left(C_{n} \unrhd P_{2}\right) \leq$ 4 by defining a map $c_{3}: V\left(C_{n} \unrhd P_{2}\right) \rightarrow\{1,2, \ldots, k\}$ for $n \geq 3$, by the following.

$$
c_{3}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
123 \ldots 123, n=3 k \\
1234 \ldots 1234, n=4 k \\
12345 \ldots 12345 \\
n=5 k, \\
1231234, n=7, n \equiv 7 \\
(\bmod 3)
\end{array}\right\}
$$

$$
c_{3}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left\{\begin{array}{l}
444 \ldots 444, n=3 k \\
3412 \ldots 3412, n=4 k \\
45123 \ldots 45123 \\
n=5 k, \\
3444412, n=7 \\
n \equiv 7(\bmod 3), \\
(44123412344, n=11,
\end{array}\right.
$$

It is easy to see that c_{3} gives $\chi_{3}\left(C_{n} \unrhd P_{2}\right) \leq 4$, for $n=3 k, n=4 k, k \in N$, but for $n=5 k$ we are forced to have $\chi_{3}\left(C_{n} \unrhd P_{2}\right)=5$ as well as $\chi_{3}\left(C_{n} \unrhd P_{2}\right)=4$ for n otherwise.
Thus $\chi_{3}\left(C_{n} \unrhd P_{2}\right)=4$, for $n=4 k$, and $\chi_{3}\left(C_{n} \unrhd P_{2}\right)=5$ for n otherwise. By observation $1 r \geq \Delta\left(C_{n} \unrhd P_{2}\right)=3$, it immediately gives $\chi_{3}\left(C_{n} \unrhd P_{2}\right)=\chi_{r}\left(C_{n} \unrhd P_{2}\right)$ for $n \geq 3$. \square

Theorem 2. Let G be a comb product denote by $C_{n} \unrhd P_{2}$ for $n \geq 3$, the edges r-dynamic chromatic number is:

$$
\begin{gathered}
\lambda\left(C_{n} \unrhd P_{2}\right)=\lambda_{d}\left(C_{n} \unrhd P_{2}\right)=\lambda_{3}\left(C_{n} \unrhd P_{2}\right)=3 \\
\lambda_{r \geq 3}\left(C_{n} \unrhd P_{2}\right)=4
\end{gathered}
$$

Proof. A comb product of graph $C_{n} \unrhd P_{2}$, for $n \geq 3$, is a connected graph with vertex $\operatorname{set} V\left(C_{n} \unrhd P_{2}\right)=\left\{x_{i}, 1 \leq\right.$ $i \leq n\} \cup\left\{y_{i}, 1 \leq i \leq n\right\}$, and edge set $E\left(C_{n} \unrhd P_{2}\right)=$ $\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} y_{i} ; 1 \leq i \leq n\right\}$. The order and size of $C_{n} \unrhd P_{n}, n \geq 3$ are $\left|V\left(C_{n} \unrhd P_{n}\right)\right|=2 n$ and $\left|E\left(C_{n} \unrhd P_{2}\right)\right|=2 n$. A comb product of graph $C_{n} \unrhd P_{2}$ is regular graph of degree 3 , thus $C_{n} \unrhd P_{2}$, $\delta\left(C_{n} \unrhd P_{2}\right)=\Delta\left(C_{n} \unrhd P_{2}\right)=3$. By observation when $\chi_{r}\left(C_{n} \unrhd P_{2}\right) \geq \min \left\{\Delta\left(C_{n} \unrhd P_{2}\right), r\right\}=\min \{3, r\}$. To find the exact value of r-dynamic chromatic number of $C_{n} \unrhd P_{2}$, we define three cases, namely $\chi\left(C_{n} \unrhd P_{2}\right), \chi_{2}\left(C_{n} \unrhd P_{2}\right)$ and $\chi_{r \geq 3}\left(C_{n} \unrhd P_{2}\right)$.

Case 1. For $r \geq 2$, the lower bond $\Delta(G) \leq \chi(G) \leq$ $\Delta(G)+1$, that $\chi\left(C_{n} \unrhd P_{2}\right) \geq 3$. Furthermore, to show that $\chi\left(C_{n} \unrhd P_{2}\right) \leq 3$ with coloring edges $E\left(C_{n} \unrhd P_{2}\right)$ as in function c_{1}. Let $D=\{1,2, \ldots, k\}$ is set of color from k-coloring that c_{1} the function by defining a map edges coloring $D, c_{1}: E\left(C_{n} \unrhd P_{2}\right) \rightarrow D$, so mapping each edges to set color D, by the following that:
$\left\{\begin{array}{l}12 \ldots 12, \\ n \text { even } \\ 12 \ldots 123, \\ n \text { odd }\end{array}\right.$

$$
c_{1}\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)=\left\{\begin{array}{l}
233 \ldots 331 \\
n \text { odd } \\
33 \ldots 33 \\
n \text { even }
\end{array}\right.
$$

From function coloring c_{1} seen that the chromatic number is $\chi\left(C_{n} \unrhd P_{2}\right) \leq 3$. Because $\chi\left(C_{n} \unrhd P_{2}\right) \leq 3$ and $\chi\left(C_{n} \unrhd P_{2}\right) \geq 3$, then $\chi\left(C_{n} \unrhd P_{2}\right)=3$, so that $\chi\left(C_{n} \unrhd P_{2}\right)=\chi_{2}\left(C_{n} \unrhd P_{2}\right)=3$.

Case 2. For $r=\geq 3$, the lower bond $\chi_{3}(G) \geq \chi_{2}(G)$, that $\chi_{3}\left(C_{n} \unrhd P_{2}\right) \geq 4$. We will prove that $\chi_{3}\left(C_{n} \unrhd P_{2}\right)=$ 3 such as coloring function c_{1} that the definition edges coloring r-dynamis not full filled. It is caused by edge $x_{1} x_{2}$, earned $d(u)+d(v)-2=4,|c(N(e))|=2$ dan $\min \{r, d(u)+d(v)-2\}=\min \{3,4\}=3$, so that $2 \nsupseteq 3$. So, lower bound is $\chi_{3}\left(C_{n} \unrhd P_{2}\right) \geq 4$. Furthermore, to show that $\chi_{3}\left(C_{n} \unrhd P_{2}\right) \leq 4$ with coloring edge $E\left(C_{n} \unrhd P_{2}\right)$ as in function c_{2}. Let $D=\{1,2, \ldots, k\}$ is set of color from k-coloring that c_{2} the function by defining a map edges coloring $D, c_{2}: E\left(C_{n} \unrhd P_{2}\right) \rightarrow D$, so mapping
each edges to set color D, by the following that:

$$
\begin{aligned}
& c_{2}\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{1}\right)=\left\{\begin{array}{l}
12 \ldots 12 \\
n \text { even } \\
12 \ldots 123 \\
n \text { odd }
\end{array}\right. \\
& c_{2}\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)=\left\{\begin{array}{l}
43 \ldots 434 \\
n \text { odd } \\
34 \ldots 34 \\
n \text { even }
\end{array}\right.
\end{aligned}
$$

From function coloring c_{2} seen that the chromatic number is $\chi\left(C_{n} \unrhd P_{2}\right) \leq 4$. Because $\chi\left(C_{n} \unrhd P_{2}\right) \leq 4$ and $\chi\left(C_{n} \unrhd P_{2}\right) \geq 4$, then $\chi\left(C_{n}^{P_{2}}\right)=4$, so that $\chi\left(C_{n} \unrhd P_{2}\right)=$ $\chi_{r \geq 3}\left(C_{n} \unrhd P_{2}\right)=4$.

Theorem 3. Let G be a comb product denote by $C_{n} \unrhd C_{m}$ for $n \geq 3$ and $m \geq 3$, vertex r-dynamic chromatic number of $C_{n} \unrhd C_{m}$ is:

$$
\left.\left.\begin{array}{c}
\chi\left(C_{n} \unrhd C_{m}\right)=\begin{array}{l}
2, n \text { even } \\
3, n \text { otherwise }
\end{array} \\
\chi_{2}\left(C_{n} \unrhd C_{m}\right)= \begin{cases}3, & n=3, m=3\end{cases} \\
\chi_{3}\left(C_{n} \unrhd C_{m}\right)=4, n=3, m=3
\end{array}\right\} \begin{array}{ll}
4, & n=5, m=5 \\
\chi_{r \geq 2}\left(C_{n} \unrhd C_{m}\right)= & n=3 k, m=3 k
\end{array}\right\} \begin{array}{ll}
5, & n=3 k, i \leq i \leq n, \\
\chi_{r \geq 4}\left(C_{n} \unrhd C_{m}\right)= \begin{cases}5 \leq m \leq 2\end{cases}
\end{array}
$$

Proof. The comb product of graph denoted by $C_{n} \unrhd$ C_{m}, is connected graph with vertex set $V\left(C_{n} \unrhd C_{m}\right)=$ $\left\{x_{i}, ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\}$ and edge set $E\left(C_{n} \unrhd C_{m}\right)=\left\{x_{n} x_{1} ; x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{i, j} x_{i, j+1} ; 1 \leq i \leq n ; 1 \leq j \leq m-3\right\} \cup\left\{x_{i} x_{i, 1} ; 1 \leq\right.$ $i \leq n\} \cup\left\{x_{1} x_{n, m-2} ; x_{i+1} x_{i+1,1} ; n \leq i \leq n\right\}$. Thus, the order and size of this graph are $p=\left|V\left(C_{n} \unrhd C_{m}\right)\right|=$ $n+n(m-2), q=\left|E\left(C_{n} \unrhd C_{m}\right)\right|=m n$. Since all edges in C_{n} joint with one edge in C_{m}, it gives $\Delta\left(C_{n} \unrhd C_{m}\right)=4$.

By Observation f. $\chi\left(C_{n} \unrhd C_{m}\right) \geq \min \left\{r, \Delta\left(C_{n} \unrhd\right.\right.$ $\left.\left.C_{m}\right)\right\}=\min \{r, 4\}$. To find the vertex r-dynamic chromatic number of ($C_{n} \unrhd C_{m}$), we define three cases, namely for $\chi\left(C_{n} \unrhd C_{m}\right), \chi_{d}\left(C_{n} \unrhd C_{m}\right), \chi_{3}\left(C_{n} \unrhd C_{m}\right)$ and $\chi_{4}\left(C_{n} \unrhd C_{m}\right)$.

For $\chi\left(C_{n} \unrhd C_{m}\right), \chi_{d}\left(C_{n} \unrhd C_{m}\right)$, the lower bound $\chi_{1}\left(C_{n} \unrhd C_{m}\right) \geq \min \{2,4\}=2$. We will show that $\chi_{1}\left(C_{n} \unrhd C_{m}\right) \leq 3$, by defining a map $c_{4}: V\left(C_{n} \unrhd C_{m}\right) \rightarrow$ $\{1,2,3, \ldots, k\}$ where $n \geq 3, m \geq 3$ by the following :

- For n and m even,

$$
c_{4}\left(x_{i}\right)= \begin{cases}1, & i \equiv 1(\bmod 2), 1 \leq i \leq n \\ 2, & i \equiv 0(\bmod 2), 1 \leq i \leq n\end{cases}
$$

$$
\begin{cases}2, & i \equiv 1(\bmod 2), j \equiv 1 \\ & (\bmod 2), 1 \leq i \leq n \\ : \quad 1 \leq j \leq m-2, \\ : \quad & i \equiv 1(\bmod 2), j \equiv 0 \\ & (\bmod 2), 1 \leq i \leq n \\ & 2 \leq j \leq m-2, \\ 2, & i \equiv 2(\bmod 2), j \equiv 2 \\ & (\bmod 2), 1 \leq i \leq n \\ : & 1 \leq j \leq m-2, \\ : & i \equiv 0(\bmod 2), j \equiv 1 \\ & (\bmod 2), 2 \leq i \leq n \\ & 1 \leq j \leq m-2\end{cases}
$$

- For n and m odd,

$$
\begin{aligned}
& (1, \quad i \equiv 1(\bmod 2), 1 \leq i \\
& c_{4}\left(x_{i}\right)= \begin{cases} & \leq n-1, \\
2, & i \equiv 0(\bmod 2), 1 \leq i \\
& \leq n-1,\end{cases} \\
& \text { (} 3, \quad i=n \text {. } \\
& \text { (} 1, \quad i \equiv 1(\bmod 2), j \equiv 0 \\
& \text { - }(\bmod 2), 1 \leq i \leq n-1 \text {, } \\
& \text { - } \quad 2 \leq j \leq m-2 \text {, } \\
& \text { - } 1, \quad i \equiv 0(\bmod 2), j \equiv 1 \\
& (\bmod 2), 2 \leq i \leq n \text {, } \\
& \text {, } \quad 1 \leq j \leq m-3, x_{i-1} \text {, } \\
& c_{4}\left(x_{i, j}\right)= \begin{cases}2, & \begin{array}{l}
\\
i \equiv 1-2 \\
(\bmod 2), j \equiv 1 \\
\\
\bmod 2), 1 \leq i \leq n,
\end{array}\end{cases} \\
& 1 \leq j \leq m-3, \\
& \text { - } 2, \quad i \equiv 0(\bmod 2) \text {, } \\
& j \equiv 0(\bmod 2), \\
& \text { - } 2 \leq i \leq n-1 \text {, } \\
& 1 \leq j \leq m-3, \\
& 3, \quad x_{n} ; x_{i, m-3} \\
& 1 \leq i \leq n-3
\end{aligned}
$$

- For $n=o d d$ and $m=e v e n$,

$$
c_{4}\left(x_{i}\right)=\left\{\begin{array}{cc}
1, & i \equiv 1(\bmod 2) \\
2, & i \equiv i \leq n-1 \\
& 1 \leq i \leq \bmod 2) \\
& 1 \leq i \leq n-1
\end{array}\right.
$$

($3, \quad i=n$.

$$
c_{4}\left(x_{i, j}\right)= \begin{cases}1, & i \equiv 1(\bmod 2), j \equiv 0 \\ & (\bmod 2), 1 \leq i \leq n, \\ 2, & i \equiv j \leq \operatorname{mon}-2, \\ & (\bmod 2), 1 \leq i \leq n\end{cases}
$$

- For $n=e v e n$ and $m=o d d$,

$$
\begin{aligned}
& c_{4}\left(x_{i}\right)=\quad 1, \quad i \equiv 1(\bmod 2), 1 \leq i \leq n, \\
& 2, \quad i \equiv 0(\bmod 2), 1 \leq i \leq n . \\
& \{1 \\
& \text { (} 1, \quad i \equiv 1(\bmod 2), j \equiv 0 \\
& (\bmod 2), 1 \leq i \leq n, \\
& \text { - } 2 \leq j \leq m-3 \\
& \text { - } 1, \quad i \equiv 0(\bmod 2), j \equiv 1 \\
& (\bmod 2), 1 \leq i \leq n \text {, } \\
& c_{4}\left(x_{i, j}\right)= \begin{cases}\quad & 1 \leq j \leq m-2, \\
2, & i \equiv 1(\bmod 2)\end{cases} \\
& 2, \quad i \equiv 1(\bmod 2) \text {, } \\
& j \equiv 1(\bmod 2), \\
& \text { - } 2, \quad i \equiv 0(\bmod 2) \\
& j \equiv 0(\bmod 2), \\
& \text { (} 3, \quad 1 \leq i \leq n ; j=m-2
\end{aligned}
$$

- For $\chi_{r=2}, n=3$ and $m=3,6$,

$$
\begin{gathered}
c_{4}\left(x_{i}\right)=i ; 1 \leq i \leq 3 \\
c_{4}\left(x_{i, j}\right)= \begin{cases}3, & i=1, j=1 \\
1, & i=2, j=1 \\
2, & i=3, j=1\end{cases}
\end{gathered}
$$

It easy to see that c_{4} gives $\chi\left(C_{n} \unrhd C_{m}\right) \leq 3$ and $\chi_{d}\left(C_{n} \unrhd C_{m}\right) \leq 3$. Thus $\chi\left(C_{n} \unrhd C_{m}\right)=3$ and $\chi_{d}\left(C_{n} \unrhd C_{m}\right)=3$.

For $r=3$, the lower bound $\chi_{3}\left(C_{n} \unrhd C_{m}\right) \geq$ $\min \{3,4\}=3$. We will show that $\chi_{3}\left(C_{n} \unrhd C_{m}\right) \leq 4$, by defining a map $c_{5}: V\left(C_{n} \unrhd C_{m}\right) \rightarrow\{1,2,3, \ldots, k\}$ where $n \geq 3$ and $m \geq 3$ by the following:

- For $n=3$ and $m=3,6$

$$
\begin{gathered}
c_{5}\left(x_{i}\right)=i \\
c_{5}\left(x_{i, j}\right)=\left\{\begin{array}{l}
3214 ; i=1 \\
1324 ; i=2 \\
2134 ; i=3
\end{array}\right.
\end{gathered}
$$

$$
c_{5}\left(x_{i}\right)=i, c_{5}\left(x_{i, j}\right)=4 ; n=3, m=3 .
$$

- For $n=3 k$ and $m=3 k$

$$
\begin{gathered}
c_{5}\left(x_{i}\right)= \begin{cases}1, & i \equiv 1(\bmod 3), \\
2, & i \equiv 2(\bmod 3), \\
3, & i \equiv 3(\bmod 3),\end{cases} \\
c_{5}\left(x_{i, j}\right)= \begin{cases}321321 \cdots 3214, & i \equiv 1 \\
132132 \cdots 1324, & i \equiv 2 \\
213213 \cdots 2134, & i \equiv 3\end{cases} \\
\begin{cases}\bmod 3),\end{cases} \\
\end{gathered}
$$

It is easy to that c_{5} gives $\chi_{3}\left(C_{n} \unrhd C_{m}\right) \leq 4$. Thus $\chi_{3}\left(C_{n} \unrhd C_{m}\right)=4$.

For $r=4$, the lower bound $\chi_{4}\left(C_{n} \unrhd C_{m}\right) \geq$ $\min \{4,4\}=4$. We will show that $\chi_{4}\left(C_{n} \unrhd C_{m}\right) \leq 5$, by defining a map $c_{6}: V\left(C_{n} \unrhd C_{m}\right) \rightarrow\{1,2,3, \ldots, k\}$ where $n \geq 3$ and $m \geq 3$ by the following:

- For $n=3 k$ and $m=3 k, 1 \leq i \leq n, 1 \leq j \leq m-2$

$$
c_{6}\left(x_{i}\right)= \begin{cases}1, & i \equiv 1(\bmod 3) \\ 2, & i \equiv 2(\bmod 3) \\ 3, & i \equiv 3(\bmod 3)\end{cases}
$$

$$
c_{6}\left(x_{i, j}\right)= \begin{cases}421421 \cdots 4215, & i \equiv 1 \\ 432432 \cdots 4325, & i \equiv 2 \\ 413413 \cdots 4135, & i \equiv 3 \\ & (\bmod 3) \\ & (\bmod 3)\end{cases}
$$

- For $n=3 k$ and $m=3 k+1,1 \leq i \leq n, 1 \leq j \leq m$ -2
$c_{6}\left(x_{i}\right)= \begin{cases}1, & i \equiv 1(\bmod 3), \\ 2, & i \equiv 2(\bmod 3), \\ 3, & i \equiv 3(\bmod 3) .\end{cases}$

It is easy to that c_{6} gives $\chi_{4}\left(C_{n} \unrhd C_{m}\right) \leq 5$. Thus $\chi_{4}\left(C_{n} \unrhd C_{m}\right)=5$.

For $r=5$, the lower bound $\chi_{5}\left(C_{n} \unrhd C_{m}\right) \geq$ $\min \{5,4\}=4$. We will show that $\chi_{5}\left(C_{n} \unrhd C_{m}\right) \leq 5$, by defining a map $c_{7}: V\left(C_{n} \unrhd C_{m}\right) \rightarrow\{1,2,3, \ldots, k\}$ where $n \geq 2$ by the following:

- For $n=5$ and $m=3 k$

$$
\begin{gathered}
c_{7}\left(x_{i}\right)=i \\
\left\{\begin{array}{rl}
421421 \cdots 421,5 & i=1, \\
432432 \cdots 432,1 & i=2, \\
543543 \cdots 543,1 & i=3, \\
254254 \cdots 254,3 & i=4, \\
215215 \cdots 215,3 & i=5,
\end{array}\right.
\end{gathered}
$$

- For $n=5$ and $m=3 k+1$

$$
\begin{gathered}
c_{7}\left(x_{i}\right)=i \\
c_{7}\left(x_{i, j}\right)= \begin{cases}421421 \cdots 421,5 & i=1 \\
324324 \cdots 324,1 & i=2 \\
543543 \cdots 543,1 \\
254254 \cdots 254,3 & i=3 \\
215215 \cdots 215,3 & i=4\end{cases}
\end{gathered}
$$

It is easy that c_{7} gives $\chi_{5}\left(C_{n} \unrhd C_{m}\right) \leq 5$. Thus $\chi_{5}\left(C_{n} \unrhd C_{m}\right)=5$. Since for $r \geq 5$, we have $r \geq \Delta\left(C_{n} \unrhd\right.$ $\left.C_{m}\right)$. By Observation 11, $\chi_{r}\left(C_{n} \unrhd C_{m}\right)=\chi_{5}\left(C_{n} \unrhd C_{m}\right)=$ 5 . It concludes the proof.

Theorem 4. Let G be a comb product denote by $C_{n} \unrhd C_{m}$ for $n \geq 3$ and $m \geq 3$, edges r-dynamic chromatic number of $\left(C_{n} \unrhd C_{m}\right)$ is :

$$
\chi_{1 \leq r \leq 3}\left(C_{n} \unrhd C_{m}\right)=4
$$

Proof. The graph ($C_{n} \unrhd C_{m}$) is a connected graph with vertex set $V\left(C_{n} \unrhd C_{m}\right)$
$=\left\{x_{i}, ; 1 \leq i \leq \bar{n}\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\}$ and edge set $E\left(C_{n} \unrhd C_{m}\right)$
$=\left\{x_{n} x_{1} ; x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i, j} x_{i, j+1} ; 1 \leq\right.$ $i \leq n ; 1 \leq j \leq m-3\} \cup\left\{x_{i} x_{i, 1} ; 1 \leq i \leq n\right\} \cup$ $\left\{x_{1} x_{n, m-2} ; x_{i+1} x_{i+1,1} ; n \leq i \leq n\right\}$. Thus, the order and size of this graph are $p=\left|V\left(C_{n} \unrhd C_{m}\right)\right|=n+n(m-$ 2), $q=\left|E\left(C_{n} \unrhd C_{m}\right)\right|=m n$. Since all edges in C_{n} joint with one edge in C_{m}, it gives $\Delta\left(C_{n} \unrhd C_{m}\right)=4$.

By Observation $\downarrow, \chi_{r}\left(C_{n} \unrhd C_{m}\right) \geq \min \left\{\chi\left(C_{n} \unrhd\right.\right.$ $\left.\left.C_{m}\right), r\right\}+1=\min \{r, d(u)+d(v)-2\}$. To find the exact value of r-dynamic chromatic number of $\left(C_{n} \unrhd C_{m}\right)$, we define three cases, namely for $\chi_{1 \leq r \leq 4}\left(C_{n} \unrhd C_{m}\right), \chi_{5}\left(C_{n} \unrhd\right.$ $\left.C_{m}\right)$.

For $r=1$, the lower bound $\Delta(G) \leq \chi(G) \leq \Delta(G)+$ 1, that $\chi\left(C_{n} \unrhd C_{m}\right) \geq 3$. Furthermore, to show that $\chi\left(C_{n} \unrhd C_{m}\right) \leq 3$ with coloring edges $E\left(C_{n} \unrhd C_{m}\right)$ as in function c_{8}. Let $D=\{1,2, \ldots, k\}$ is set of color from k-coloring that c_{1} the function by defining a map edges coloring $D, c_{8}: E\left(C_{n} \unrhd C_{m}\right) \rightarrow D$, so mapping each edges to set color D, by the following that:

$$
\begin{gathered}
c_{8}\left(x_{i} x_{i+1}\right)=\begin{array}{l}
1, i \text { odd } 1 \leq i \leq n-1 \\
2, i \text { even } 1 \leq i \leq n-1
\end{array} \\
c_{8}\left(x_{n} x_{i+1}\right)=\left\{\begin{array}{l}
2, i \text { odd } 1 \leq i \leq n-1 \\
3, i \text { even } 1 \leq i \leq n-1
\end{array}\right. \\
c_{8}\left(x_{i} y_{1, j}\right)=4,1 \leq i \leq n 1 \leq j \leq m
\end{gathered}
$$

$$
\begin{aligned}
& \text { For } n=\text { even } \\
& \qquad \begin{array}{l}
1, \\
c_{8} \equiv 1(\bmod 3), \\
1 \leq i \leq m-3
\end{array} \\
& \left\{\begin{array}{l}
4, \\
2, \\
\\
\\
1 \leq 2(\bmod 3), \\
1 \leq i \leq m-3 \\
1 \leq m o d
\end{array}\right), \\
& c_{8}\left(x_{i+1} y_{i, m-2}\right)=3 \\
& c_{8}\left(x_{1} y_{n, m-2}\right)=3
\end{aligned}
$$

- For $n=$ even

$$
\begin{aligned}
& \text { 1, } \mathrm{j} \equiv 1(\bmod 3), i=n \\
& 1 \leq i \leq n-2 \text {; } \\
& 1 \leq i \leq m, \\
& 2, \quad \mathrm{j} \equiv 2(\bmod 3), \\
& c_{8}\left(y_{i, j} y_{i, j+1}\right)=\left\{\begin{array}{l}
i=n-1 \\
2 \leq i \leq n-2 ; \\
2 \leq i \leq m,
\end{array}\right. \\
& 3, \quad \mathrm{j} \equiv 2(\bmod 3) \text {, } \\
& n-1 \leq i \leq n \\
& \text { 4, } \quad 1 \leq i \leq n \text {; } \\
& \text { (} \quad 1 \leq j \leq m \\
& c_{8}\left(x_{i+1} y_{i, m-2}\right)=3,1 \leq i \leq n-2 \\
& c_{8}\left(x_{1} y_{n, m-2}\right)=2 \\
& c_{8}\left(x_{n-1} y_{n-1, m-2}\right)=1
\end{aligned}
$$

From function coloring c_{8} seen that the chromatic number is $\chi\left(C_{n} \unrhd C_{m}\right) \leq 4$. Because $\chi\left(C_{n} \unrhd C_{m}\right) \leq 4$ and $\chi\left(C_{n} \unrhd C_{m}\right) \geq 4$, then $\chi\left(C_{n} \unrhd C_{m}\right)=4$, so that $\chi\left(C_{n} \unrhd C_{m}\right)=\chi_{2}\left(C_{n} \unrhd C_{m}\right)=\chi_{3}\left(C_{n} \unrhd C_{m}\right)=4$.

CONCLUSIONS

We have found some edge and vertex r-dynamic chromatic number of several graphs, namely comb product of graph $C_{n} \unrhd P_{2}$ and $C_{n} \unrhd C_{m}$. It is interesting to characterize a property of any graph operation to have an exact value or upper bound of their r-dynamic chromatic numbers.

ACKNOWLEDGEMENT

We gratefully acknowledge the support from DP2M research grant HIKOM-DIKTI and CGANT - University of Jember of year 2016.

REFERENCES

[1] B. Montgomery, "Dynamic Coloring of Graphs", Ph.D Dissertation, West Virginia University, 2001.
[2] S. Akbari, M. Ghanbari and S. Jahanbekam, "On the dynamic chromatic number of graphs", in: Combinatorics and Graphs, in: Contemp. Math., Amer. Math. Soc., vol. 531, pp. 1-18, 2010.
[3] H.J. Lai, B. Montgomery and H. Poon, "Upper bounds of dynamic chromatic number", Ars Combin., vol. 68, pp. 193-201, 2003.
[4] S. Jahanbekama, J. Kimb, O. Suil and D. B. Westd, "On r-dynamic Coloring of Graphs", Discrete Applied Mathematics, 2016, In Press.
[5] M. Alishahi, 'Dynamic chromatic number of regular graphs", Discrete Appl. Math., vol. 160, pp. 2098-2103, 2012.
[6] M. Alishahi, "On the dynamic coloring of graphs", Discrete Appl. Math., vol. 159, pp. 152-156, 2011.
[7] S. Akbari, M. Ghanbari and S. Jahanbekam, "On the list dynamic coloring of graphs", Discrete Appl. Math., vol. 157, pp. 3005-3007, 2009.
[8] A. Taherkhani, " r-Dynamic Chromatic Number of Graphs", arXiv:1401.6470v1 [math.CO], Iran: Dept of Math, Institutu for Basic Studies and Advance Sciense, 2014.
[9] D. Meganingtyas, Dafik and Slamin, "On r-dynamic Coloring of Operation Product of Cycle and Path Graph", University of Jember, 2016.

