

On the Rainbow Vertex Connection Number of Edge Comb of Some Graph

Agustina M^{1,2}, Dafik^{1,3}, Slamin^{1,4}, Kusbudiono^{1,2} ¹CGANT University of Jember Indonesia ²Mathematics Depart. University of Jember Indonesia ³Mathematics Edu. Depart. University of Jember Indonesia ⁴System Information. Depart. University of Jember e-mail: mahagustina@yahoo.co.id

Abstract—By an edge comb, we mean a graph formed by combining two graphs G and H, where each edge of graph G is replaced by the which one edge of graph H, denote by $G \supseteq H$. A vertex colored graph $G \supseteq H = (V(G \supseteq H), E(G \supseteq H))$ is said rainbow vertex-connected, if for every two vertices u and v in $V(G \supseteq H)$, there is a u - v path with all internal vertices have distinct color. The rainbow vertex connection number of $G \supseteq H$, denoted by $rvc(G \supseteq H)$ is the smallest number of color needed in order to make $G \supseteq H$ rainbow vertex-connected. This research aims to find an exact value of the rainbow vertex connection number of $G \supseteq H$ are $P_n \supseteq Bt_m$, $S_n \supseteq Bt_m$, $L_n \supseteq Bt_m$, $F_{m,n} \supseteq Bt_p$, $rvc(P_n \supseteq S_m)$, $rvc(C_n \supseteq S_m)$, and $rvc(W_n \supseteq S_m) W_n \supseteq Bt_m$. The result shows that the resulting rainbow vertex connection attain the given lower bound.

Keywords—Rainbow vertex connection coloring, rvc number, edge comb.

INTRODUCTION

Rainbow vertex connection concept was first introduced in 2009 by Krivelevich and Yuster [1]. These new concept arised from information exchange interconnection communication of information between agencies and government. When we need to route a messages in a cellular network in such a way that each link on the route between two vertices is assigned with a distinct channel such a problem is considered to be a rainbow colour. The minimum number of channels that we have to use, is exactly a rainbow connection number. For more details various rainbow connections we refer to [2] [3] [4] [5] [6] [7] [8] [9].

Suppose G is a connected graph *nontrivial* with *vertex-coloring* $c: V(G) \rightarrow \{1, 2, 3, ..., n\}, n \in \mathbb{N}$, that vertex adjacent may have same color, we refer to [10] [11] [12]. A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertex have distinct colors. The *rainbow vertex connection* of a connected graph G, denote by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected, we refer to [13].

A graph formed by combining two graphs, suppose graph G and H, where each edge of graph G is replaced with which one edge of graph H is called comb product, denote by $G \supseteq H$. If $|V(G)| = p_1$ and $|E(G)| = q_1$, while $|V(H)| = p_2$ and $|E(H)| = q_2$ then for $|V(G \supseteq H)| =$ $q_1(p_2-2) + p_1$ and $|E(G \supseteq H)| = q_1q_2$.

The Research activities on rainbow vertex connection is growing rapidly, we refer the result to [14] [15]. Simamora [14] show that.

Theorem 1. [14] If $n \ge 2$, then

$$rvc(Pc_n) = \begin{cases} \lceil \frac{n}{2} \rceil; & \text{for } n \leq 7, \\ \lceil \frac{n}{2} \rceil + 1; & \text{for another } n \end{cases}$$

Theorem lower bound of *rainbow vertex connection number* is shown by [1]

Theorem 2. For any graph G,

$$rvc(G) \ge diam(G) - 1$$

THE RESULTS

The followings show rainbow vertex connection number rvc(G) when G are $P_n \supseteq Bt_m, S_n \supseteq Bt_m, L_n \supseteq Bt_m, F_{m,n} \supseteq Bt_p$, and $W_n \supseteq Bt_m$. \diamond **Theorem 1.** Let G be a comb product denote by $P_n \succeq Bt_m$, for $n \geq 3$ and $m \geq 2$. The rainbow vertex connection number $rvc(P_n \trianglerighteq Bt_m) = n - 2$

 $j \leq m$ }. The order of the graph $|V(P_n \supseteq Bt_m)| = n + mn - m$ and the size is $|E(P_n \supseteq Bt_m)| = n - 2m + 2mn - 1$. According Theorem 2 the lower bound are stated as follow: $rvc(P_n \supseteq Bt_m) \ge diam(P_n \supseteq Bt_m) - 1$, where $diam(P_n \supseteq Bt_m) = n - 1$ is the diameter of graph G. Since $diam(P_n \supseteq Bt_m) = n - 1$, for $n \ge 3$ and $m \ge 2$, it follows that $rvc(P_n \supseteq Bt_m) \ge n - 1 - 1$. And than, will be proof that $rvc(P_n \supseteq Bt_m) \le n - 2$ by construct $c: V(G) \rightarrow \{1, 2, 3, \ldots, k\}$ as follows:

$$c(v) = \begin{cases} 1, & \text{for } v = x_i; \ i = 1, n \\ i - 1, & \text{for } v = x_i; \ 2 \le i \le n - 1 \\ 1, & \text{for } v = x_{i,j}; \ 1 \le i \le n, \\ 1 \le j \le m \end{cases}$$

From the function can determine $rvc(P_n \ge Bt_m) \le n-2$. There for $rvc(P_n \ge Bt_m) \ge n-2$ and $rvc(P_n \ge Bt_m) \le n-2$, then $rvc(P_n \ge Bt_m) = n-2$. \Box

 \diamond **Theorem 2.** Let G be a comb product denote by $S_n \supseteq Bt_m$, for $n \ge 3$ and $m \ge 2$. The rainbow vertex connection number $rvc(S_n \supseteq Bt_m) = 1$.

Proof. Let G be a comb product denote by $S_n \supseteq Bt_m$. The vertex set of G is $V(S_n \supseteq Bt_m) = \{A\} \cup \{x_i; 1 \le i \le n\} \cup \{x_{i,j}; 1 \le i \le n, 1 \le j \le m\}$ and the edge set is $E(S_n \supseteq Bt_m) = \{Ax_i; 1 \le i \le n\} \cup \{x_ix_{i,j}; 1 \le i \le n, 1 \le j \le m\}$. The order of the graph $|V(S_n \supseteq Bt_m)| = mn + n + 1$ and the size is $|E(S_n \supseteq Bt_m)| = 2mn + n$. According Theorem 2 and lower bound are stated as follow: $rvc(S_n \supseteq Bt_m) \ge diam(S_n \supseteq Bt_m) - 1$, where $diam(S_n \supseteq Bt_m) = 2$, for $n \ge 3$ dan $m \ge 2$, it follows that $rvc(S_n \supseteq Bt_m) \ge 2 - 1$. And than, will be proof that $rvc(S_n \supseteq Bt_m) \le 1$ by construct $c: V(G) \rightarrow \{1, 2, 3, \dots, k\}$ as follows:

$$c(v) = \begin{cases} 1, & \text{for } v = A \\ 1, & \text{for } v = x_i; 1 \le i \le n \\ 1, & \text{for } v = x_{i,j}; 1 \le i \le n, 1 \le j \le m \end{cases}$$

From the function can determine $rvc(S_n \supseteq Bt_m) \leq 1$. Therefore $rvc(S_n \supseteq Bt_m) \geq 1$ and $rvc(S_n \supseteq Bt_m) \leq 1$, then $rvc(S_n \supseteq Bt_m) = 1$.

 \diamond **Theorem 3.** Let G be a comb product denote by $L_n \succeq Bt_m$, for $n \ge 3$ and $m \ge 2$. The rainbow vertex connection number $rvc(L_n \succeq Bt_m) = n$.

Proof. Let *G* be a comb product denote by $L_n \supseteq Bt_m$. The vertex set of *G* is $V(L_n \supseteq Bt_m) = \{x_i, y_i; 1 \le i \le n\}$ $\cup \{x_{i,j}, y_{i,j}; 1 \le i \le n - 1, 1 \le j \le m\} \cup \{z_{i,j}; 1 \le i \le n, 1 \le j \le m\}$ and the edge set is $E(L_n \supseteq Bt_m) = \{x_ix_{i+1}, y_iy_{i+1}; 1 \le i \le n\} \cup \{x_iy_j; 1 \le i \le n\}$ $\cup \{x_ix_{i,j}, y_iy_{i,j}, x_{i+1}x_{i,j}, y_{i+1}y_{i,j}; 1 \le i \le n - 1, 1 \le j \le m\} \cup \{x_iz_{i,j}, y_iz_{i,j}; 1 \le i \le n, 1 \le j \le m\}$. The order of the graph $|V(L_n \supseteq Bt_m)| = 3mn - 2m + 2n$ and the size is $|E(L_n \supseteq Bt_m)| = 6mn - 4m + 3n - 2$, dan diameter $diam(L_n \supseteq Bt_m) = n + 1$. According Theorem 2 the lower bound are stated as follow: $rvc(L_n \supseteq Bt_m) \ge diam(L_n \supseteq Bt_m) - 1$, where $diam(L_n \supseteq Bt_m) = n + 1$, for $n \ge 3$ dan $m \ge 2$, it follows that $rvc(L_n \supseteq Bt_m) \le n + 1 - 1$. And than, will be proof that $rvc(L_n \supseteq Bt_m) \le n + 1 - 1$. And than, will be proof that $rvc(L_n \supseteq Bt_m) \le n + 1 - 1$.

$$c(v) = \begin{cases} 1, & \text{for } v = x_{i,j}, y_{i,j}; \\ 1 \le i \le n - 1, \ 1 \le j \le m \\ 1, & \text{for } v = z_{i,j}; \ 1 \le i \le n \\ 1 \le j \le m \\ i, & \text{for } v = x_i; \ 1 \le i \le n \\ n - 1, & \text{for } v = y_i; \ 1 \le i \le n \end{cases}$$

From the function can determine $rvc(L_n \supseteq Bt_m) \le n$. Therefore $rvc(L_n \supseteq Bt_m) \ge n$ and $rvc(L_n \supseteq Bt_m) \le n$, then $rvc(L_n \supseteq Bt_m) = n$.

 \diamond **Theorem 4.** Let *G* be a comb product denote by $F_{m,n} \succeq Bt_p$, for $m \ge 3$, $n \ge 2$, and $p \ge 2$. The rainbow vertex connection number $rvc(F_{m,n} \trianglerighteq Bt_p) = 3$.

Proof. Let G be a comb product denote by $F_{m,n} \succeq Bt_p$. The vertex set of G is $V(F_{m,n} \succeq Bt_p) = \{A\} \cup \{x_{i,j}; 1 \le i \le m, 1 \le j \le m\} \cup \{x_{i,j,k}; 1 \le i \le m, 1 \le j \le n-1, 1 \le k \le p\} \cup \{y_{i,j,k}; 1 \le i \le m, 1 \le j \le j \le n-1\}$

 $n, 1 \le k \le p \text{ and the edge set is } E(F_{m,n} \trianglerighteq Bt_p) = \{Ax_{i,j}; 1 \le i \le m, 1 \le j \le n\} \cup \{Ay_{i,j,k}; 1 \le i \le m, 1 \le j \le n, 1 \le k \le p\} \cup \{x_{i,j}y_{i,j,k}; 1 \le i \le m, 1 \le j \le n, 1 \le k \le p\} \cup \{x_{i,j}x_{i,j,k}; 1 \le i \le m, 1 \le j \le n - 1, 1 \le k \le p\} \cup \{x_{i,j}$

 $\begin{array}{c} +_{1}x_{i,j,k}; 1 \leq \\ i \leq m, 1 \leq j \leq n-1, 1 \leq k \leq p \}. \text{ The order of} \\ \text{the graph } |V(F_{m,n} \trianglerighteq Bt_p)| = 2mnp + mn - p + 1 \text{ and} \\ \text{the size is } |E(F_{m,n} \trianglerighteq Bt_p)| = 4mnp + 2mn - 2mp - m. \\ \text{According Theorem 2 the lower bound are stated as follow:} \\ rvc(F_{m,n} \trianglerighteq Bt_p) \geq diam(F_{m,n} \trianglerighteq Bt_p) - 1, \text{ where} \\ diam(F_{m,n} \trianglerighteq Bt_p) = 4, \text{ for } m \geq 3, n \geq 2, \text{ and } p \geq 2, \\ \text{it follows that } rvc(F_{m,n} \trianglerighteq Bt_p) \geq 4 - 1. \text{ And than,} \\ \text{will be proof that } rvc(F_{m,n} \trianglerighteq Bt_p) \leq 4 - 1. \text{ And than,} \\ \text{will be proof that } rvc(F_{m,n} \trianglerighteq Bt_p) \leq 4 - 1. \text{ And than,} \\ 1 \leq j \leq n - 1, 1 \leq k \leq p \\ 1, \text{ untuk } v = y_{i,j,k}; 1 \leq i \leq m, \\ \end{array}$

From the function can determine $rvc(F_{m,n} \supseteq Bt_p) \leq 3$. Therefore $rvc(F_{m,n} \supseteq Bt_p) \geq 3$ and $rvc(F_{m,n} \supseteq Bt_p) \leq 3$

3, then
$$rvc(F_{m,n} \ge Bt_p) = 3.$$

 \diamond **Theorem 5.** Let *G* be a comb product denote by $P_n \supseteq S_m$, for $n \ge 3$ and $m \ge 3$. The rainbow vertex connection number $rvc(P_n \supseteq S_m) = n - 2$.

Proof. Let G be a comb product denote by $P_n riangleq S_m$. The vertex set of G is $V(P_n riangleq S_m) = \{x_i; 1 \le i \le n\}$ $\cup \{x_{i,j}; 2 \le i \le n, 1 \le j \le m-1\}$ and the edge set is $E(P_n riangleq S_m) = \{x_ix_{i+1}; 1 \le i \le n-1\}$ $\cup \{x_ix_{i,j}; 2 \le i \le n, 1 \le j \le m-1\}$. The order of the graph $|V(P_n riangleq S_m)| = m(n-1) + 1$ and the size is $|E(P_n riangleq S_m)| = m(n-1)$. According Theorem 2 the lower bound are stated as follow: $rvc(P_n riangleq S_m) \ge$ $diam(P_n riangleq S_m) - 1$, where $diam(P_n riangleq S_m)$ is the diameter of graph G. Since $diam(P_n riangleq S_m) = n-1$, for $n \ge 3$ and $m \ge 3$, it follows that $rvc(P_n riangleq S_m) \le n-1-1$. And than, will be proof that $rvc(P_n riangleq S_m) \le n-2$ by construct $c: V(G) \to \{1, 2, 3, \dots, k\}$ as follows:

$$c(v) = \begin{cases} 1, & \text{for } x_{i,j}; \ 2 \le i \le n, \ 1 \le j \le m-1 \\ 1, & \text{for } v = x_1 \\ 2, & \text{for } v = x_i; \ 2 \le i \le n, \end{cases}$$

From the function can determine $rvc(P_n \ge S_m) \le n-2$. Therefore $rvc(P_n \ge S_m) \ge n-2$ and $rvc(P_n \ge S_m) \le n-2$, then $rvc(P_n \ge S_m) = n-2$.

 \diamond **Theorem 6.** Let *G* be a comb product denote by $C_n \succeq S_m$, for $n \ge 3$ and $m \ge 3$. The rainbow vertex connection number $rvc(C_n \succeq S_m) = n$.

Proof. Let *G* be an exponential graph denote by *C_n* ⊵ *S_m*. The vertex set of *G* is *V*(*C_n*⊵*S_m*) = {*x*_i; 1 ≤ *i* ≤ *n*} ∪{*x*_{*i*,*j*}; 1 ≤ *i* ≤ *n*, 1 ≤ *j* ≤ *m* − 1} and the edge set is *E*(*C_n* ⊵ *S_m*) = {*x*₁*x_n*, *x*_{*i*}*x*_{*i*+1}; 1 ≤ *i* ≤ *n* − 2} ∪{*x*_{*i*}*x*_{*i*}, *j*; 1 ≤ *i* ≤ *n*, 1 ≤ *j* ≤ *m* − 1}. The order of the graph |*V*(*C_n*⊵*S_m*)| = *mn* and the size is |*E*(*C_n*⊵*S_m*)| = *n* + *n*(*m* − 1). According Theorem 2 the lower bound are stated as follow: *rvc*(*C_n* ⊵ *S_m*) ≥ *diam*(*C_n* ⊵ *S_m*) − 1, where *diam*(*C_n* ⊵ *S_m*) is the diameter of graph *G*. Since *diam*(*C_n* ⊵ *S_m*) = $\lfloor \frac{n}{2} \rfloor$ + 2, for *n* ≥ 3 and *m* ≥ 3, it follows that *rvc*(*C_n* ⊵ *S_m*) ≥ $\lfloor \frac{n}{2} \rfloor$ + 2 − 1. And than, will be proof that *rvc*(*C_n* ⊵ *S_m*) ≤ $\lfloor \frac{n}{2} \rfloor$ + 1 by construct *c*: *V*(*G*) → {1, 2, 3, ..., *k*} as follows:

$$c(v) = \begin{cases} 1, & \text{for } x_{i,j}; \ 2 \le i \le n, \ 1 \le j \le m-1 \\ 1, & \text{for } v = x_i; \ 1 \le i \le n \end{cases}$$

From the function can determine that $rvc(C_n \supseteq S_m) = n$. \Box

(b) Theorem 7. Let G be a comb product denote by W $a_n^{S_m}$, for $n \ge 4$ and $m \ge 3$. The rainbow vertex connection number $rvc(W_n \ge S_m) = n$.

Proof. Let G be an exponential graph denote by $W_n \supseteq S_m$. The vertex set of G is $V(W_n \supseteq S_m) = \{A, x_i; 1 \le i \le n\} \cup \{x_{i,j}; 1 \le i \le n, 1 \le j \le m-1\} \cup \{A_{i,j}; 1 \le i \le n, 1 \le j \le m-1\}$ and the edge set is $E(W_n \supseteq S_m) = \{x_n x_1, x_i x_{i+1}; 1 \le i \le n-2\} \cup \{Ax_i; 1 \le i \le n\} \cup \{x_i x_{i,j}; 1 \le i \le n, 1 \le j \le m-1\} \cup \{x_i A_{i,j}; 1 \le i \le n, 1 \le j \le m-1\}$. The order of the graph $|V(W_n \supseteq S_m)| = 2mn - n + 1$ and the size is $|E(W_n \supseteq S_m)| = 2mn$. According Theorem 2 the lower bound are stated as follow: $rvc(W_n \supseteq S_m) \ge diam(W_n \supseteq S_m) - 1$, where $diam(W_n \supseteq S_m) = 4$, for $n \ge 4$ and $m \ge 3$, it follows that $rvc(W_n \supseteq S_m) \ge 4 - 1$. And than, will be proof that $rvc(W_n \supseteq S_m) \le 3$ by

construct $c: V(G) \rightarrow \{1, 2, 3, \dots, k\}$ as follows:

$$c(v) = \begin{cases} 1, & \text{for } v = x_{i,j}; \ 2 \le i \le n, \ 1 \le j \le m-1 \\ 1, & \text{for } v = A_{i,j}; \ 2 \le i \le n, \ 1 \le j \le m-1 \\ 1, & \text{for } v = A \\ i, & \text{for } v = x_{i,j}; \ 1 \le i \le n, \end{cases}$$

From the function can determine $rvc(W_n \ge S_m) = n$. \Box

Conjecture 1. Let G be any graph. Let Bt_n be a Triangular Book graph. The rainbow vertex connection number of $G \supseteq Bt_n$ is $rvc(G \supseteq Bt_n) = diam(G) + diam(Bt_n) - 3$.

Conjecture 2. Let G be any graph. Let S_n be a Star graph. The rainbow vertex connection number of $G \supseteq S_n$ is $rvc(G \supseteq S_n) = n$.

CONCLUSIONS

We have studied the rainbow vertex connection number of some comb product, namely $P_n \supseteq Bt_m$, $S_n \supseteq Bt_m$, $L_n \supseteq Bt_m$, $F_{m,n} \supseteq Bt_p$, and $W_n \supseteq Bt_m$. The result obtain that all values of rvc(G) take a place in the lower bound $rvc(G) \ge diam(G) - 1$. The result shows that for $rvc(P_n \supseteq Bt_m)$, $rvc(S_n \supseteq Bt_m)$, $rvc(L_n \supseteq Bt_m)$, $rvc(F_{m,n} \supseteq Bt_p)$, $rvc(P_n \supseteq S_m)$, $rvc(C_n \supseteq S_m)$, and $rvc(W_n \supseteq S_m)$ are respectively as follows:

1. a comb product denote by $P_n \supseteq Bt_m$ for $n \ge 2$ dan $m \ge 2$, then *rainbow vertex connection number*

$$rvc(P_n^{Bt_m}) = \begin{cases} 1; & \text{for } n = 2 \text{ and} \\ m \ge 2 \\ n-2; & \text{for } n \ge 3 \text{ and} \\ m \ge 2 \end{cases}$$

- 2. a comb product denote by $S_n \succeq Bt_m$ for $n \ge 3$ and $m \ge 2$, then rainbow vertex connection number $rvc(S_n \trianglerighteq Bt_m) = 1$.
- 3. a comb product denote by $L_n \supseteq Bt_m$, for $n \ge 3$ and $m \ge 2$, then rainbow vertex connection number $rvc(L_n \supseteq Bt_m) = n$.
- 4. a comb product denote by $F_{m,n} \ge Bt_p$, for $m \ge 3$, $n \ge 2$, and $p \ge 2$, then rainbow vertex connection number $rvc(F_{m,n} \ge Bt_p) = 3$.
- 5. a comb product denote by $P_n \ge S_m$ for $n \ge 3$ and $m \ge 2$, then rainbow vertex connection number $rvc(P_n \ge S_m) = n - 2$.
- 6. a comb product denote by $C_n \ge S_m$ for $n \ge 3$ and $m \ge 2$, then rainbow vertex connection number $rvc(C_n \ge S_m) = n$.
- 7. a comb product denote by $W_n \ge S_m$ for $n \ge 4$ and $m \ge 2$, then rainbow vertex connection number $rvc(W_n \ge S_m) = n$.

ACKNOWLEDGEMENT

We gratefully acknowledge the support from CGANT - University of Jember of year 2016.

REFERENCES

- M. Krivelevich and R. Yuster, "The rainbow connection of a graph is (at most) reciprocal to its minimum degree three", J. Graph Theory, vol. 63, issue 3, pp. 185-191, 2009.
- [2] X. Li and Y. Shi, "On The Rainbow Vertex-Connection", Discussiones Mathemmaticae, 2010.
- [3] S. A. Yulianti and Dafik, "Rainbow Connection Number pada Graf Operasi", Prosiding Seminar Matematika dan Pendidikan Matematika, vol. 1, issue 1, 2014.
- [4] A. Nastiti and Dafik, "Rainbow Connection Number of Special Graph and Its Operations", Prosiding Seminar Matematika dan Pendidikan Matematika, vol. 1, issue 1, 2014.
- [5] M. Mahmudah and Dafik, "Rainbow Connection Hasil Operasi Graf", Prosiding Seminar Matematika dan Pendidikan Matematika, vol. 1, issue 1, 2014.
- [6] R. Alfarisi, Dafik and A. Fatahillah, "The Rainbow Connection Number of Special Graphs", Jurnal: Universitas Jember, 2015.
- [7] Syafrizal, Gema, and L. Yulianti, "The Rainbow Connection of Fan and Sun", Applied Mathematical Sciences, vol. 7, issue 64, pp. 3155-3159, 2013.
- [8] X. Li and Y. Sun, "Rainbow Connection of Graphs", New York: Springer Briefs in Mathematics, 2012.
- [9] R. N. Darmawan and Dafik, "Rainbow Connection Number of Prism and Product of Two Graphs", Prosiding Seminar Nasional Matematika, vol. 1, issue 1, 2014.
- [10] G. Chartrand and P. Zhang, "Chromatic Graph Theory", Chapman and Hall, 2008.
- [11] J. A. Gallian, "A Dynamic Survey of Graph Labeling", University of Minnesota, 1997.
- [12] Dafik, "Structural Properties and Labeling of Graphs", University of Ballarat, 2007.
- [13] A. B. Ericksen, "A matter of security", Graduating Engineer and Computer Careers, pp. 24-28, 2007.
- [14] D. N. S. Simamora and A. N. M. Salman, "The Rainbow (Vertex) Connection Number of Pencil Graphs", Procedia Computer Science, vol. 74, pp. 138-142, 2015.
- [15] F. Nuriyeva, O. Ugurlu and H. Kutucu, "A Mathematical Model for the Rainbow Vertex-Connection Number", Advance in Computer Science: an International Journal, vol. 2, issue 4, ISSN: 2322-5257, 2013.