On the Rainbow Vertex Connection Number of Edge Comb of Some Graph

Agustina $\mathrm{M}^{1,2}$, Dafik ${ }^{1,3}$, Slamin ${ }^{1,4}$, Kusbudiono ${ }^{1,2}$
${ }^{1}$ CGANT University of Jember Indonesia ${ }^{2}$ Mathematics
Depart. University of Jember Indonesia ${ }^{3}$ Mathematics Edu.
Depart. University of Jember Indonesia
${ }^{4}$ System Information. Depart. University of Jember
e-mail: mahagustina@yahoo.co.id

Abstract

By an edge comb, we mean a graph formed by combining two graphs G and H, where each edge of graph G is replaced by the which one edge of graph H, denote by $G \unrhd H$. A vertex colored graph $G \unrhd H=(V(G \unrhd H), E(G \unrhd H))$ is said rainbow vertex-connected, if for every two vertices u and v in $V(G \unrhd H)$, there is a $u-v$ path with all internal vertices have distinct color. The rainbow vertex connection number of $G \unrhd H$, denoted by $r v c(G \unrhd H)$ is the smallest number of color needed in order to make $G \unrhd H$ rainbow vertex-connected. This research aims to find an exact value of the rainbow vertex connection number of exponential graph, namely $r v c(G \unrhd H)$ when $G \unrhd H$ are $P_{n} \unrhd B t_{m}, S_{n} \unrhd B t_{m}, L_{n} \unrhd B t_{m}, F_{m, n} \unrhd B t_{p}$, $r v c\left(P_{n} \unrhd S_{m}\right), r v c\left(C_{n} \unrhd S_{m}\right)$, and $r v c\left(W_{n} \unrhd S_{m}\right) W_{n} \unrhd B t_{m}$. The result shows that the resulting rainbow vertex connection attain the given lower bound.

Keywords-Rainbow vertex connection coloring, rvc number, edge comb.

INTRODUCTION

Rainbow vertex connection concept was first introduced in 2009 by Krivelevich and Yuster [1]. These new concept arised from information exchange interconnection communication of information between agencies and government. When we need to route a messages in a cellular network in such a way that each link on the route between two vertices is assigned with a distinct channel such a problem is considered to be a rainbow colour. The minimum number of channels that we have to use, is exactly a rainbow connection number. For more details various rainbow connections we refer to [2] [3] [4] [5] [6] [7] [8] [9].

Suppose G is a connected graph nontrivial with vertex-coloring $c: V(G) \rightarrow\{1,2,3, \ldots, n\}, n \in \mathbb{N}$, that vertex adjacent may have same color, we refer to [10] [11] [12]. A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertex have distinct colors. The rainbow vertex connection of a connected graph G, denote by $r v c(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected, we refer to [13].

A graph formed by combining two graphs, suppose graph G and H, where each edge of graph G is replaced with which one edge of graph H is called comb product, denote by $G \unrhd H$. If $|V(G)|=p_{1}$ and $|E(G)|=q_{1}$, while $|V(H)|=p_{2}$ and $|E(H)|=q_{2}$ then for $|V(G \unrhd H)|=$ $q_{1}\left(p_{2}-2\right)+p_{1}$ and $|E(G \unrhd H)|=q_{1} q_{2}$.

The Research activities on rainbow vertex connection is growing rapidly, we refer the result to [14] [15]. Simamora [14] show that.

Theorem 1. [14]If $n \geq 2$, then

$$
r v c\left(P c_{n}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil ; & \text { for } n \leq 7, \\ \left\lceil\frac{n}{2}\right\rceil+1 ; & \text { for another } n\end{cases}
$$

Theorem lower bound of rainbow vertex connection number is shown by [1]

Theorem 2. For any graph G,

$$
\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1
$$

THE RESULTS

The followings show rainbow vertex connection number $r v c(G)$ when G are $P_{n} \unrhd B t_{m}, S_{n} \unrhd B t_{m}, L_{n} \unrhd$ $B t_{m}, F_{m, n} \unrhd B t_{p}$, and $W_{n} \unrhd B t_{m}$.
\diamond Theorem 1. Let G be a comb product denote by $P_{n} \unrhd$ $B t_{m}$, for $n \geq 3$ and $m \geq 2$. The rainbow vertex connection number rvc $\left(P_{n} \unrhd B t_{m}\right)=n-2$

Proof. Let G be a comb product denote by $P_{n} \unrhd B t_{m}$. The vertex set of G is $V\left(P_{n} \unrhd B t_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\}$ $\cup\left\{x_{i, j} ; 1 \leq i \leq n-1,1 \leq j \leq m\right\}$ and the edge set is $E\left(P_{n} \unrhd B t_{m}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i, j} ; 1\right.$
$\leq i \leq n-1,1 \leq j \leq m\} \cup\left\{x_{i+1} x_{i, j} ; 1 \leq i \leq n-\right.$ $1,1 \leq$
$j \leq m\}$. The order of the graph $\left|V\left(P_{n} \unrhd B t_{m}\right)\right|=$ $n+m n-m$ and the size is $\left|E\left(P_{n} \unrhd B t_{m}\right)\right|=n-2 m+$ $2 m n-1$. According Theorem 2 the lower bound are stated as follow: $r v c\left(P_{n} \unrhd B t_{m}\right) \geq \operatorname{diam}\left(P_{n} \unrhd B t_{m}\right)-1$, where $\operatorname{diam}\left(P_{n} \unrhd B t_{m}\right)=n-1$ is the diameter of graph G. Since $\operatorname{diam}\left(P_{n} \unrhd B t_{m}\right)=n-1$, for $n \geq 3$ and $m \geq 2$, it follows that $r v c\left(P_{n} \unrhd B t_{m}\right) \geq n-1-1$. And than, will be proof that $\operatorname{rvc}\left(\bar{P}_{n} \unrhd B t_{m}\right) \leq n-2$ by construct $c: V(G) \rightarrow\{1,2,3, \ldots, k\}$ as follows:

From the function can determine $\operatorname{rvc}\left(P_{n} \unrhd B t_{m}\right) \leq$ $n-2$. There for $r v c\left(P_{n} \unrhd B t_{m}\right) \geq n-2$ and $r v c\left(P_{n} \unrhd\right.$ $\left.B t_{m}\right) \leq n-2$, then $r v c\left(P_{n} \unrhd B t_{m}\right)=n-2$.
\diamond Theorem 2. Let G be a comb product denote by $S_{n} \unrhd$ $B t_{m}$, for $n \geq 3$ and $m \geq 2$. The rainbow vertex connection number $\operatorname{rvc}\left(S_{n} \unrhd B t_{m}\right)=1$.

Proof. Let G be a comb product denote by $S_{n} \unrhd$ $B t_{m}$. The vertex set of G is $V\left(S_{n} \unrhd B t_{m}\right)=\{A\}$ $\cup\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and the edge set is $E\left(S_{n} \unrhd B t_{m}\right)=\left\{A x_{i} ; 1 \leq i \leq n\right\}$ $\cup\left\{x_{i} x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$. The order of the graph $\left|V\left(S_{n} \unrhd B t_{m}\right)\right|=m n+n+1$ and the size is $\left|E\left(S_{n} \unrhd B t_{m}\right)\right|=2 m n+n$. According Theorem 2 and lower bound are stated as follow: $r v c\left(S_{n} \unrhd B t_{m}\right) \geq$ $\operatorname{diam}\left(S_{n} \unrhd B t_{m}\right)-1$, where $\operatorname{diam}\left(S_{n} \unrhd B t_{m}\right)$ is the diameter of graph G. Since $\operatorname{diam}\left(S_{n} \unrhd B t_{m}\right)=2$, for $n \geq 3$ dan $m \geq 2$, it follows that $\operatorname{rvc}\left(S_{n} \unrhd B t_{m}\right) \geq 2-1$. And than, will be proof that $\operatorname{rvc}\left(S_{n} \unrhd B t_{m}\right) \leq 1$ by construct $c: V(G) \rightarrow\{1,2,3, \ldots, k\}$ as follows:

$$
c(v)= \begin{cases}1, & \text { for } v=A \\ 1, & \text { for } v=x_{i} ; 1 \leq i \leq n \\ 1, & \text { for } v=x_{i, j}: 1<i<n\end{cases}
$$

$$
1, \quad \text { for } v=x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m
$$

From the function can determine $r v c\left(S_{n} \unrhd B t_{m}\right) \leq 1$. Therefore $r v c\left(S_{n} \unrhd B t_{m}\right) \geq 1$ and $r v c\left(S_{n} \unrhd B t_{m}\right) \leq 1$, then $\operatorname{rvc}\left(S_{n} \unrhd B t_{m}\right)=1$.
\diamond Theorem 3. Let G be a comb product denote by $L_{n} \unrhd$ $B t_{m}$, for $n \geq 3$ and $m \geq 2$. The rainbow vertex connection number rvc $\left(L_{n} \unrhd B t_{m}\right)=n$.

Proof. Let G be a comb product denote by $L_{n} \unrhd B t_{m}$. The vertex set of G is $V\left(L_{n} \unrhd B t_{m}\right)=\left\{x_{i}, y_{i} ; 1 \leq i \leq n\right\}$ $\cup\left\{x_{i, j}, y_{i, j} ; 1 \leq i \leq n-1,1 \leq j \leq m\right\} \cup\left\{z_{i, j} ; 1 \leq i \leq\right.$ $n, 1 \leq j \leq m\}$ and the edge set is $E\left(L_{n} \unrhd B t_{m}\right)=$ $\left\{x_{i} x_{i+1}, y_{i} y_{i+1} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} y_{j} ; 1 \leq i \leq n\right\}$ $\cup\left\{x_{i} x_{i, j}, y_{i} y_{i, j}, x_{i+1} x_{i, j}, y_{i+1} y_{i, j} ; 1 \leq i \leq n-1,1 \leq\right.$ $j \leq m\} \cup\left\{x_{i} z_{i, j}, y_{i} z_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$. The order of the graph $\left|V\left(L_{n} \unrhd B t_{m}\right)\right|=3 m n-2 m+2 n$ and the size is $\left|E\left(L_{n} \unrhd B t_{m}\right)\right|=6 m n-4 m+3 n-2$, dan diameter $\operatorname{diam}\left(L_{n} \unrhd B t_{m}\right)=n+1$. According Theorem 2 the lower bound are stated as follow: $\operatorname{rvc}\left(L_{n} \unrhd B t_{m}\right) \geq$ $\operatorname{diam}\left(L_{n} \unrhd B t_{m}\right)-1$, where $\operatorname{diam}\left(L_{n} \unrhd B t_{m}\right)$ is the diameter of graph G. Since $\operatorname{diam}\left(L_{n} \unrhd B t_{m}\right)=n+1$, for $n \geq 3$ dan $m \geq 2$, it follows that $r v c\left(L_{n} \unrhd B t_{m}\right) \geq$ $n+1-1$. And than, will be proof that $r v c\left(L_{n} \unrhd B t_{m}\right) \leq n$ by construct $c: V(G) \rightarrow\{1,2,3, \ldots, k\}$ as follows:

$$
c(v)= \begin{cases}1, & \text { for } v=x_{i, j}, y_{i, j} ; \\ 1, & 1 \leq i \leq j \leq m \\ \text { for } v=z_{i, j} ; 1 \leq 1 \leq i \leq n \\ i, & 1 \leq j \leq m \\ \text { for } v=x_{i} ; 1 \leq i \leq n \\ n-1, & \text { for } v=y_{i} ; 1 \leq i \leq n\end{cases}
$$

From the function can determine $\operatorname{rvc}\left(L_{n} \unrhd B t_{m}\right) \leq n$. Therefore $r v c\left(L_{n} \unrhd B t_{m}\right) \geq n$ and $r v c\left(L_{n} \unrhd B t_{m}\right) \leq n$, then $r v c\left(L_{n} \unrhd B t_{m}\right)=n$.
\checkmark Theorem 4. Let G be a comb product denote by $F_{m, n} \unrhd$ $B t_{p}$, for $m \geq 3, n \geq 2$, and $p \geq 2$. The rainbow vertex connection number $r v c\left(F_{m, n} \unrhd B t_{p}\right)=3$.

Proof. Let G be a comb product denote by $F_{m, n} \unrhd B t_{p}$. The vertex set of G is $V\left(F_{m, n} \unrhd B t_{p}\right)=\{A\} \cup\left\{x_{i, j} ; 1 \leq\right.$ $i \leq m, 1 \leq j \leq m\} \cup\left\{x_{i, j, k} ; 1 \leq i \leq m, 1 \leq j\right.$ $\leq n-1,1 \leq k \leq p\} \cup\left\{y_{i, j, k} ; 1 \leq i \leq m, 1 \leq\right.$ $j \leq$
$n, 1 \leq k \leq p\}$ and the edge set is $E\left(F_{m, n} \unrhd B t_{p}\right)=$ $\left\{A x_{i, j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{A y_{i, j, k} ; 1 \leq i\right.$
$\leq m, 1 \leq j \leq n, 1 \leq k \leq p\} \cup\left\{x_{i, j} y_{i, j, k} ; 1 \leq\right.$ $i \leq$
$m, 1 \leq j \leq n, 1 \leq k \leq p\} \cup\left\{x_{i, j} x_{i, j, k} ; 1 \leq i\right.$
$\leq m, 1 \leq j \leq n-1,1 \leq k \leq p\} \cup\left\{x_{i, j}\right.$ ${ }_{+1} x_{i, j, k} ; 1 \leq$
$i \leq m, 1 \leq j \leq n-1,1 \leq k \leq p\}$. The order of the graph $\left|V\left(F_{m, n} \unrhd B t_{p}\right)\right|=2 m n p+m n-p+1$ and the size is $\left|E\left(F_{m, n} \unrhd B t_{p}\right)\right|=4 m n p+2 m n-2 m p-m$. According Theorem 2 the lower bound are stated as follow: $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right) \geq \operatorname{diam}\left(F_{m, n} \unrhd B t_{p}\right)-1$, where $\operatorname{diam}\left(F_{m, n} \unrhd B t_{p}\right)$ is the diameter of graph G. Since $\operatorname{diam}\left(F_{m, n} \unrhd B t_{p}\right)=4$, for $m \geq 3, n \geq 2$, and $p \geq 2$, it follows that $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right) \geq 4-1$. And than, will be proof that $r v c\left(F_{m, n} B B t_{p}\right) \leq 3$ by construct $c: V(G) \rightarrow\left\{1,2,3_{1}\right.$ untuk $v, n=$ as foflobis $\leq i \leq m$, $1 \leq j \leq n-1,1 \leq k \leq p$
1, untuk $v=y_{i, j, k} ; 1 \leq i \leq m$, $1 \leq j \leq n, 1 \leq k \leq p$
2 , untuk $v=x_{i, 2 j-1} ; 1 \leq i \leq m$, $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$
$3, \quad$ untuk $v=x_{i, 2 j} ; 1 \leq i \leq m$,
$1 \leq j \leq\left\lceil\frac{n-1}{2}\right\rceil$
From the function can determine $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right) \leq 3$. Therefore $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right) \geq 3$ and $r v c\left(F_{m, n} \unrhd B t_{p}\right) \leq$

3 , then $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right)=3$.
\diamond Theorem 5. Let G be a comb product denote by $P_{n} \unrhd$ S_{m}, for $n \geq 3$ and $m \geq 3$. The rainbow vertex connection number $\operatorname{rvc}\left(P_{n} \unrhd S_{m}\right)=n-2$.

Proof. Let G be a comb product denote by $P_{n} \unrhd S_{m}$. The vertex set of G is $V\left(P_{n} \unrhd S_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\}$ $\cup\left\{x_{i, j} ; 2 \leq i \leq n, 1 \leq j \leq m-1\right\}$ and the edge set is $E\left(P_{n} \unrhd S_{m}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\}$ $\cup\left\{x_{i} x_{i, j} ; 2 \leq i \leq n, 1 \leq j \leq m-1\right\}$. The order of the graph $\left|V\left(P_{n} \unrhd S_{m}\right)\right|=m(n-1)+1$ and the size is $\left|E\left(P_{n} \unrhd S_{m}\right)\right|=m(n-1)$. According Theorem 2 the lower bound are stated as follow: $\operatorname{rvc}\left(P_{n} \unrhd S_{m}\right) \geq$ $\operatorname{diam}\left(P_{n} \unrhd S_{m}\right)-1$, where $\operatorname{diam}\left(P_{n} \unrhd S_{m}\right)$ is the diameter of graph G. Since $\operatorname{diam}\left(P_{n} \unrhd S_{m}\right)=n-1$, for $n \geq 3$ and $m \geq 3$, it follows that $r v c\left(P_{n} \unrhd S_{m}\right) \geq n-1-1$. And than, will be proof that $r v c\left(P_{n} \unrhd S_{m}\right) \leq n-2$ by construct $c: V(G) \rightarrow\{1,2,3, \ldots, k\}$ as follows:

$$
c(v)= \begin{cases}1, & \text { for } x_{i, j} ; 2 \leq i \leq n, 1 \leq j \leq m-1 \\ 1, & \text { for } v=x_{1} \\ 2, & \text { for } v=x_{i} ; 2 \leq i \leq n,\end{cases}
$$

From the function can determine $\operatorname{rvc}\left(P_{n} \unrhd S_{m}\right) \leq n-2$. Therefore $r v c\left(P_{n} \unrhd S_{m}\right) \geq n-2$ and $r v c\left(P_{n} \unrhd S_{m}\right) \leq$ $n-2$, then $r v c\left(P_{n} \unrhd S_{m}\right)=n-2$.
\diamond Theorem 6. Let G be a comb product denote by $C_{n} \unrhd$ S_{m}, for $n \geq 3$ and $m \geq 3$. The rainbow vertex connection number $\operatorname{rvc}\left(C_{n} \unrhd S_{m}\right)=n$.

Proof. Let G be an exponential graph denote by $C_{n} \unrhd$ S_{m}. The vertex set of G is $V\left(C_{n} \unrhd S_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\}$ $\cup\left\{x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$ and the edge set is $E\left(C_{n} \unrhd S_{m}\right)=\left\{x_{1} x_{n}, x_{i} x_{i+1} ; 1 \leq i \leq n-2\right\}$ $\cup\left\{x_{i} x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$. The order of the graph $\left|V\left(C_{n} \unrhd S_{m}\right)\right|=m n$ and the size is $\left|E\left(C_{n} \unrhd S_{m}\right)\right|=$ $n+n(m-1)$. According Theorem 2 the lower bound are stated as follow: $\operatorname{rvc}\left(C_{n} \unrhd S_{m}\right) \geq \operatorname{diam}\left(C_{n} \unrhd S_{m}\right)-1$, where $\operatorname{diam}\left(C_{n} \unrhd S_{m}\right)$ is the diameter of graph G. Since $\operatorname{diam}\left(C_{n} \unrhd S_{m}\right)=\left\lfloor\underline{n}_{2}\right\rfloor+2$, for $n \geq 3$ and $m \geq 3$, it follows that $\operatorname{rvc}\left(C_{n} \unrhd S_{m}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+2-1$. And than, will be proof that $\operatorname{rvc}\left(C_{n} \unrhd S_{m}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+1$ by construct $c: V(G) \rightarrow\{1,2,3, \ldots, k\}$ as follows:

$$
c(v)= \begin{cases}1, & \text { for } x_{i, j} ; 2 \leq i \leq n, 1 \leq j \leq m-1 \\ 1, & \text { for } v=x_{i} ; 1 \leq i \leq n\end{cases}
$$

From the function can determine that $r v c\left(C_{n} \unrhd S_{m}\right)=n$.
\diamond Theorem 7. Let G be a comb product denote by W ${ }_{n}^{S_{m}}$, for $n \geq 4$ and $m \geq 3$. The rainbow vertex connection number $\operatorname{rvc}\left(W_{n} \unrhd S_{m}\right)=n$.

Proof. Let G be an exponential graph denote by $W_{n} \unrhd$ S_{m}. The vertex set of G is $V\left(W_{n} \unrhd S_{m}\right)=\left\{A, x_{i} ; 1 \leq\right.$ $i \leq n\} \cup\left\{x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$ $\cup\left\{A_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$ and the edge set is $E\left(W_{n} \unrhd S_{m}\right)=\left\{x_{n} x_{1}, x_{i} x_{i+1} ; 1 \leq i \leq n-2\right\}$ $\cup\left\{A x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$ $\cup\left\{x_{i} A_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$. The order of the graph $\left|V\left(W_{n} \unrhd S_{m}\right)\right|=2 m n-n+1$ and the size is $\left|E\left(W_{n} \unrhd S_{m}\right)\right|=2 m n$. According Theorem 2 the lower bound are stated as follow: $r v c\left(W_{n} \unrhd S_{m}\right) \geq$ $\operatorname{diam}\left(W_{n} \unrhd S_{m}\right)-1$, where $\operatorname{diam}\left(W_{n} \unrhd S_{m}\right)$ is the diameter of graph G. Since $\operatorname{diam}\left(W_{n} \unrhd S_{m}\right)=4$, for $n \geq 4$ and $m \geq 3$, it follows that $r v c\left(W_{n} \unrhd S_{m}\right) \geq 4-1$. And than, will be proof that $\operatorname{rvc}\left(W_{n} \unrhd S_{m}\right) \leq 3$ by
construct $c: V(G) \rightarrow\{1,2,3, \ldots, k\}$ as follows:
$c(v)= \begin{cases}1, & \text { for } v=x_{i, j} ; 2 \leq i \leq n, 1 \leq j \leq m-1 \\ 1, & \text { for } v=A_{i, j} ; 2 \leq i \leq n, 1 \leq j \leq m-1 \\ 1, & \text { for } v=A \\ i, & \text { for } v=x_{i,} ; 1 \leq i \leq n,\end{cases}$
From the function can determine $\operatorname{rvc}\left(W_{n} \unrhd S_{m}\right)=n$.
Conjecture 1. Let G be any graph. Let $B t_{n}$ be a Triangular Book graph. The rainbow vertex connection number of $G \unrhd B t_{n}$ is $\operatorname{rvc}\left(G \unrhd B t_{n}\right)=\operatorname{diam}(G)+$ $\operatorname{diam}\left(B t_{n}\right)-3$.
Conjecture 2. Let G be any graph. Let S_{n} be a Star graph. The rainbow vertex connection number of $G \unrhd S_{n}$ is $\operatorname{rvc}\left(G \unrhd S_{n}\right)=n$.

CONCLUSIONS

We have studied the rainbow vertex connection number of some comb product, namely $P_{n} \unrhd B t_{m}, S_{n} \unrhd B t_{m}$, $L_{n} \unrhd B t_{m}, F_{m, n} \unrhd B t_{p}$, and $W_{n} \unrhd B t_{m}$. The result obtain that all values of $r v c(G)$ take a place in the lower bound $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$. The result shows that for $\operatorname{rvc}\left(P_{n} \unrhd B t_{m}\right), \operatorname{rvc}\left(S_{n} \unrhd B t_{m}\right), r v c\left(L_{n} \unrhd B t_{m}\right)$, $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right), \operatorname{rvc}\left(P_{n} \unrhd S_{m}\right), \operatorname{rvc}\left(C_{n} \unrhd S_{m}\right)$, and $\operatorname{rvc}\left(W_{n} \unrhd S_{m}\right)$ are respectively as follows:

1. a comb product denote by $P_{n} \unrhd B t_{m}$ for $n \geq 2$ dan $m \geq 2$, then rainbow vertex connection number

$$
\operatorname{rvc}\left(P_{n}^{B t_{m}}\right)= \begin{cases}1 ; & \text { for } n=2 \text { and } \\ n-2 ; & m \geq 2 \\ & \text { for } n \geq 3 \text { and } \\ & m \geq 2\end{cases}
$$

2. a comb product denote by $S_{n} \unrhd B t_{m}$ for $n \geq 3$ and $m \geq 2$, then rainbow vertex connection number $\operatorname{rvc}\left(S_{n} \unrhd B t_{m}\right)=1$.
3. a comb product denote by $L_{n} \unrhd B t_{m}$, for $n \geq 3$ and $m \geq 2$, then rainbow vertex connection number $r v c\left(L_{n} \unrhd B t_{m}\right)=n$.
4. a comb product denote by $F_{m, n} \unrhd B t_{p}$, for $m \geq 3$, $n \geq 2$, and $p \geq 2$, then rainbow vertex connection number $\operatorname{rvc}\left(F_{m, n} \unrhd B t_{p}\right)=3$.
5. a comb product denote by $P_{n} \unrhd S_{m}$ for $n \geq 3$ and $m \geq 2$, then rainbow vertex connection number $\operatorname{rvc}\left(P_{n} \unrhd S_{m}\right)=n-2$.
6. a comb product denote by $C_{n} \unrhd S_{m}$ for $n \geq 3$ and $m \geq 2$, then rainbow vertex connection number $\operatorname{rvc}\left(C_{n} \unrhd S_{m}\right)=n$.
7. a comb product denote by $W_{n} \unrhd S_{m}$ for $n \geq 4$ and $m \geq 2$, then rainbow vertex connection number $r v c\left(W_{n} \unrhd S_{m}\right)=n$.

ACKNOWLEDGEMENT

We gratefully acknowledge the support from CGANT University of Jember of year 2016.

REFERENCES

[1] M. Krivelevich and R. Yuster, "The rainbow connection of a graph is (at most) reciprocal to its minimum degree three", J. Graph Theory, vol. 63, issue 3, pp. 185-191, 2009.
[2] X. Li and Y. Shi, "On The Rainbow Vertex-Connection", Discussiones Mathemmaticae, 2010.
[3] S. A. Yulianti and Dafik, "Rainbow Connection Number pada Graf Operasi", Prosiding Seminar Matematika dan Pendidikan Matematika, vol. 1, issue 1, 2014.
[4] A. Nastiti and Dafik, "Rainbow Connection Number of Special Graph and Its Operations", Prosiding Seminar Matematika dan Pendidikan Matematika, vol. 1 , issue $1,2014$.
[5] M. Mahmudah and Dafik, "Rainbow Connection Hasil Operasi Graf", Prosiding Seminar Matematika dan Pendidikan Matematika, vol. 1, issue 1, 2014.
[6] R. Alfarisi, Dafik and A. Fatahillah, "The Rainbow Connection Number of Special Graphs", Jurnal: Universitas Jember, 2015.
[7] Syafrizal, Gema, and L. Yulianti, "The Rainbow Connection of Fan and Sun", Applied Mathematical Sciences, vol. 7, issue 64, pp. 3155-3159, 2013.
[8] X. Li and Y. Sun, "Rainbow Connection of Graphs", New York: Springer Briefs in Mathematics, 2012.
[9] R. N. Darmawan and Dafik, "Rainbow Connection Number of Prism and Product of Two Graphs", Prosiding Seminar Nasional Matematika, vol. 1, issue 1, 2014.
[10] G. Chartrand and P. Zhang, "Chromatic Graph Theory", Chapman and Hall, 2008.
[11] J. A. Gallian, "A Dynamic Survey of Graph Labeling", University of Minnesota, 1997.
[12] Dafik, "Structural Properties and Labeling of Graphs", University of Ballarat, 2007.
[13] A. B. Ericksen, "A matter of security", Graduating Engineer and Computer Careers, pp. 24-28, 2007.
[14] D. N. S. Simamora and A. N. M. Salman, "The Rainbow (Vertex) Connection Number of Pencil Graphs", Procedia Computer Science, vol. 74, pp. 138-142, 2015.
[15] F. Nuriyeva, O. Ugurlu and H. Kutucu, "A Mathematical Model for the Rainbow Vertex-Connection Number", Advance in Computer Science: an International Journal, vol. 2, issue 4, ISSN: 2322-5257, 2013.

