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Abstract—Let G be a simple, connected and undirected graph and r, k be natural numbers. An edge coloring that
uses k colors is a k-edge coloring. Thus a graph G can be described as a function ¢ : V(G) — S, where |S| = k, such
that any two adjacent vertices receive different colors. An r-dynamic k-coloring is a proper k-coloring c of G such that
|e(N (v))| > min{r,d(v)} for each vertex v in V(G), where N (v) is the neighborhood of v and ¢(S) = {c(v) : v € S} fora
vertex subset S. The r-dynamic chromatic number, written as x,(G), is the minimum & such that G has an r-dynamic
k-coloring. In this paper, we will study the existence of r-dynamic k-coloring when G is shackle of wheel graph. As we know,
that a shackle operation of H denoted by shack(H,v,n) is a shackle with vertex as the connector. We also can generated

shackle graph with edge connector or subgraph as the connector.
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INTRODUCTION

According to Chartrand, an edge coloring of a graph G
is an assignment of colors to the edges of G, one color to
each edge. If adjacent edges are assigned distinct colors,
then the edge coloring is a proper edge coloring. An
r-dynamic proper k-coloring of a graph G is a proper
coloring ¢ from V(G) to a set S of k colors such that
|e(N(v))| > min{r,d(v)} for each vertex v in V(G),
where ¢S = {c(v) v € S} for a vertex subset
S. The r-dynamic chromatic number of a graph G,
written x,(G), is the minimum k such that G has an
r-dynamic proper k-coloring. The dynamic chromatic
number, x(G), have been investigated in several papers,
see, e.g.,[LLI21,[31,[41.15] [6], [7],[8]for some references.

The following observation is useful to find the exact
values of r-dynamic chromatic number.

Observation 1. Let 6(G) and A(G) be a minimum and
maximum degree of a graph G, respectively. Then the
followings hold

* xo(G) = min{A(G), 7} + 1,
* X(G) <x2(G) < x3(G) < -+ < xae)(G),
* Xr+1(G) = x»(G) and if r > A(G) then x,(G) =
XA(G)(G)'
THE RESULTS

We are ready to show our main theorems. There are
three theorems found in this study. These deals r-dynamic
chromatic number of Shack(W,,, v, m), Shack (W,,, e, m)
and Shack (W,,, H C W,,, m)

Theorem 1. Let G = Shack(W,,v,m) be a vertex
shackle of wheel graph (W,,), the r-dynamic chromatic
number for n > 3 is:

X (Shack(W,,v,m)) = xqa(Shack(W,,v,m)) =

{ 3, n odd
4, n even

4, n = 0mod3
5, n otherwise

x3(Shack(Wy,v,m)) = {

Xr(Shack(W,,e,m)) =r+1

Proof. Let G be a Shack (W,,,v,m), is a connected
graph with vertex set V(shack(Wn,v m)) = {x;,1 <
i < mpU{y;l < i < ml < j < n-—1}
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and edge set E(Shack(Wy,v,m)) = {z;y;;,1 < i <

m,1 < j <n_1}U{yz,Jy2j+1»1 < i< ml

7= =130 iy, 1 < 7} T vhder amdQSlgécL)’rL
s{,ﬂcéng(WTZ,v—m )are ](7/(—Si£ack (Wy,v,m))| = nm + 1
dan |E(Shack(W,,v,m))| = 2nm. By Observation 1,
Xr(Shack(W,, e, m)) > min{A(Shack(W,, e, m)), r}

To find the exact value of r-dynamic chromatic
number of Shack(W,,e,m), we define some
cases, x(Shack(W,,e,m)),x2(Shack(W,,e,m)), ..,
Xr(Shack(W,, e, m)).

For r = 1, the Ilower bound of the
x(Shack(Wy,,e,m)) > min{6,1} = 1. And for r = 2,
the lower bound x (Shack(W,,,e,m)) > min{6,2} = 2.
We will proof that x.,.(Shack(W,,, e, m)) < 3 by defining
amap cq1 : V(Shack(W,,v,m)) — {1,2, ..., k} where
n > 3, by the following : co1(z;) =1, 1 <i<m

((2323.., i0dd, n
even,1 <i<m, 1<53<n—-1
(ss) = ] 23 23 ..., i 0odd, n odd and even,
Ca1lYij _{ 1<i<m,1<j<n-—1

2432 2432 ..., i even, n odd,
L 1<i<m,1<j5<n—-1

It is easy to see that ¢, gives x(Shack(W,,v,m)) <
3 for n odd, but for n even, we could not avoid to
have x(Shack(W,,v,m)) < 4. From that coloring
function of ¢, we can say that x (Shack(W,, e, m)) <3
for n odd, because of x(Shack(W,,v,m)) < 3 and
x(Shack(W,,v,m)) > 3 then x(Shack(W,,v,m)) =

3. And for n even, x(Shack(Wy,e,m)) < 4
and because of x(Shack(W,,v,m)) < 4 and
X(Shack(Wy,v,m)) > 4 then x(Shack(W,,v,m)) =
4. x(Shack(W,,e,m)) = 4, for n even. And also for

Xda(Shack(W,,,v,m))

3
X,«(Shack(Wn, e, m))
that Xr(S hack( NE
V(Shack(Wy, v,

the lower bound of the
> min{6,3} = 3.We will proof
,m)) < 4 by defining a map
m

) —>_{1 2,...,k} where n > 3,

-
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by the following : coo(z;) =1, 1 <i<m

1<i<m, 1<j5<n-1
4343 ..., n =3, i even,
1<i<m,1<j<n-1

234 ... 23, n = 0mod3, i odd,
1<i<m, 1<j<n—-1

342 ... 34, n = 0mod3, i even,
1<i<m,1<j<n-1
234 ... 2345, n = 1mod3, 7 odd,
1<i<m,1<j<n-1
3452 ... 342, n = 1mod3, i even,
1<i<m, 1<j5<n—-1

2345 ..., n = 2mod3, i even,
1<i<m,1<j<n-1

(2323.., n=3,iodd,
1
1
1
1

ca2(Yij)

I
——

p—- m = - o=

It is easy to see that ¢, gives x3(Shack(W,,,v,m)) <
4 for n = O0mod3 , but for n otherwise , we
could not avoid to have x3(Shack(W,,v,m)) < 5.
From that coloring function of c,3 we can say that
x3(Shack(W,,e,m)) < 4 for n = 0mod3, because of
x3(Shack(W,,v,m)) < 3 and x3(Shack(W,,v,m)) >
4 then x(Shack(Wp,v,m)) = 4. And for
n otherwise, x3(Shack(Wy,e,m)) < 5 and because of
x3(Shack(Wy,v,m)) <5 and xs(Shack(W,,v,m)) >
5 then x3(Shack(W,,v,m)) = 5.

For r > 4, the lower bound of the
Xr(Shack(W,,e,m)) > min{n,r} = n.We will proof
that x,(Shack(Wy,e,m)) < n + 1 by defining a map
Cas : V(Shack(Wy,v,m)) — {1,2,...,k} where n > 3,
by the following :

1, i=1mod3
cas(zi) = L”gQJ, i=2mod3
n+1, i =0mod3
((J+1 1<j<["3?
and | 5] <j<n
Ca i.j) — n— : n
) =4 Tty g
L ntl, j=n

It is easy to see that cno gives x,(Shack(Wy,,v,m)) <
n + L From that coloring function of cu3
we can say that x,.(Shack(W,,e,m)) < n +
1, because of x.(Shack(W,,v,m)) < n +
1 and x,(Shack(W,,v,m)) > n + 1 then
Xr(Shack(Wy,v,m)) =n+ 1.

Theorem 2. Let G = Shack(W,,e,m) be an edge
shackle of wheel graph (W), the r-dynamic chromatic
number for n > 4 is:

x(Shack(W,,,e,m)) = xa(Shack(W,,e,m)) =

Xr(Shack(Wy,,e,m)) =r+1 {

Proof. Let G be a Shack (W,,,e,m), is a connected
graph with vertex set V(shack(W,,,v,m)) = {x;,1 <
1 <m+1}U{y;;,1 <i<m,1<j<n—4}U{z,1<
i < 2m + 1} and edge set E(Shack(W,,v,m)) =
{z;2;41,1 < 4 < m}. The order and size of
shack(W,,,v,m) are |V(Shack(W,,e,m))| = nm
m + 2 dan |E(Shack(W,,e,m))| = 2nm — m
1). By Observation 1, x,(Shack(W,, e, m))
min{A(Shack(W,,e,m)),r}

To find the exact value of r-dynamic chromatic
number of Shack(W,,v,m), we define some cases,
namely x(Shack(W,,v,m)), x2(Shack(W,,v,m)), ...,
Xr(Shack(W,,v,m)). For r = 1, the lower bound of the
x(Shack(W,,v,m)) > min{6,1} = 1. And for r = 2,
the lower bound x(Shack(W,,,e,m)) > min{6,2} = 2.

vV + |
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3, n even
4, n odd

We will proof that x (Shack(W,,,e,m)) < 3 by defining
amap cgy : V(Shack(Wy,v,m)) — {1,2,...,k} where
n > 3, by the following : cs1(z;) =23...23, 1 <i<m
cpi(z) =3121..3121, 1 <i<m

( 2, jodd, nodd,
L L<i<m, 1<j< |25
, 2, jeven, nodd,
, 1<i<m, [%52]<j<n-—4
, 2, jeven, neven,
L 1<i<m, 1<) <[22
, 2, jodd, neven,
, 1<i<m, [%52]<j<n—4
Co1(yi ;) = { 3, jeven, modd,
1<i<m, 1<j< (252
' 3, jodd, nodd,
v 1<i<m, [B54<j<n—4
v 3, jodd, neven,
1 1<i<m, 1<) < |25
' 3, jeven, neven,
v 1<i<m, [ <j<n—4
1
L4, 1<i<m, j=["%"]

It is easy to see that cgy gives x(Shack(W,, e, m)) <
3 for n even, but for n odd, we could not avoid to
have x(Shack(Wy,e,m)) < 4. From that coloring
function of cg; we can say that x (Shack(W,,,e,m)) <3
for n even, because of x(Shack(W,,e,m)) < 3 and
X(Shack(Wy,e,m)) > 3 then x(Shack(W,,e,m)) =
3.  And for n odd, x(Shack(W,,e,m)) < 4
and because of x(Shack(W,,e,m)) < 4 and
X(Shack(Wy,e,m)) > 4 then x(Shack(W,,e,m)) =
4. x(Shack(W,,e,m)) = 4, for n even. And also for
Xd(Shack(W,, e, m))

For r > 3, the lower bound of the
Xr(Shack(W,,e,m)) > min{n,r} = n.We will proof
that x,.(Shack(W,,e,m)) < n + 1 by defining a map
cga : V(Shack(W,,e,m)) — {1,2,...,k} wheren > 3,
by the following : ¢ga(yi ;) =j+5, 1 <i<n—4
cpa(x;) =426...426, 1 <i<m+1

1, n= 0mod3
cp2(zi) = 3, n= 1mod3
5 n= 0mod 3

It is easy to see that cgo gives x,(Shack(W,,, e, m))
<j + 5, for1 < i < m — 4. So when j=n-4, we
have x,(Shack(W,,e,m)) < n + 1 From that coloring
function of cgy we can say that x,.(Shack(W,,,e,m)) <
n + 1 for, because of x,(Shack(W,,v,m)) <
n + 1 and x,(Shack(Wp,v,m)) > n + 1 then
Xr(Shack(Wy,v,m)) =n+ 1.

Theorem 3. Let G = Shack(W,,H C W,,m) be a
shackle subgraph of wheel graph (W,,), the r-dynamic
chromatic number for n > 6 is:

x(Shack(W,, H C W,,,m)) =

Xd(Shack(W,,,H C W,,m) =

3, n even
4, n odd

4, n=6

x3(Shack((W,,, H C Wy, m)) = { 5, n otherwise

Xr(Shack(W,, H C Wy,,m))=r+1forn>r

Proof. Let G be a Shack (W,,,H C W,,m), is a
connected graph with vertex set V(shack(W,,v,m)) =
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{zi,1 < i < 2m} U {z;;,1 < i <

jo< (%2 Uyl < i < omyl
[2527} and edge set E(Shack(W,,H C W,,m))
{ziyia} U {ziwia} U {zi w0, 1 < i
i< P udmigeiaal <0 <om
124 Uiyl <0 <ml < j < [ 252
1} U {yi112i+1, ]. S ’L S m} U {yi’lzi,Q S Z 2n — 2} U
{zi12i41,2 < im}U{x; 12,2 < i2n—2}. The order and
size of shack(W,,, H C W,,, m) are |V (Shack(W,,, H C
Wy,m))| = nm — 3m + 5 dan |E(Shack(W,,,e,m))| =
2nm — 5m + 5). By Observation 1, x.,.(Shack(W,,, H C
Wp,m)) > min{A(Shack(Wy,, H C W,,m)),r}

To find the exact value of r-dynamic chromatic number
of Shack(W,,v,m), we define some cases, namely
x(Shack(W,,,H C W,,m)),x2(Shack(W,,H C
Wiom)), vy Xr(Shack(W,, H C Wy, m)). Forr = 1,
the lower bound of the x(Shack(W,,,H C W,,m)) >
min{6,1} = 1. And for r = 2, the lower bound
X(Shack(W,,, H C Wy, m)) > min{6,2} = 2. We will
proof that x (Shack(W,,, H C W,,m)) < 3 by defining
amap cy1 : V(Shack(W,,,H C W,,,m)) — {1,2,...,k}
where n > 3, by the following :

cﬂ(zi):{ 213..., n=6

VAN
3
[t

+ IANIA I INIA

2121 ..., n>7
321..., n=6
cy1(Yig) = 3231 ... , neven
3434 ... , nodd
321.., n=6
cyi(zij) = 3231 ... , neven
3434 ... . nodd

It is easy to see that ¢ gives x(Shack(W,,H C
W,,m)) < 3 forn = odd , but for neven
, we could not avoid to have xs(Shack(W,,H C
W,,m)) < 4. From that coloring function of ¢,
we can say that x(Shack(W,,H C W,,m))
3 for n = odd, because of x3(Shack(W,, H
Wyn,m)) < 3 and x3(Shack(W,,H C W,,m))
3 then x(Shack(W,,H C W,,m)) = 3.
for n even, x(Shack(W,,H C W,,m))
and because of x(Shack(W,,H C Wy,,m)
4 and x(Shack(W,,H C Wp,m)) > 4 then
x(ShackW,,,H C W,,m)) =
X2(Shack(W,, H C W,,m))

For r = 3, the lower bound of the x(Shack(W,,, H C
Wpn,m)) > min{6,3} = 3. We will proof that
x(Shack(W,,,H C W,,m)) < 4 by defining a map
Cy2 2 V(Shack(Wy,, H C Wy, m)) = {1,2,..., k} where
n > 3, by the following : cy2(2;) = 2121 ..., 1 < i <
2m —1

=IA
>
IA = B IV NIA

o —
w2
o
7
-
=
a

L f 3434.., n=6
2(Ui5) =\ 345345 .. n>6

el ){ 4343 ... , n=6
1234 345345 ... , n>6
It is easy to see that cyo gives x(Shack(W,,H C
W,,m)) < 4 forn = 6, but forn > 6
, we could not avoid to have x3(Shack(W,,H C
W,,m)) < 5. From that coloring function of c,o
we can say that x(Shack(W,,H C W,,m)) <
4 for n = 6, because of x3(Shack(W,,H C
Wp,m)) < 4 and x3(Shack(W,,H C W,,m)) >
4 then x(Shack(W,,H C Wp,m)) = 4. And

for n > 6, x(Shack(W,,H C W,,m))

IA
ot
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and because of x(Shack(W,,H C Wp,,m)) <
5 and x(Shack(W,,H <C Wy,m)) > 5 then
x(Shack(W,,,H C W,,,m)) =5.

For r > 4, the lower bound of the x(Shack(W,,, H C
Wpn,m)) > min{n,r} = n. We will proof that
X(Shack(Wy,, H C Wy,,m)) < n + 1 by defining a map
cys 1 V(Shack(W,,, H C W,,m)) = {1,2, ..., k} where
n > 3, by the following :

Cyalzi) =j+3, 1<) <[5
cya(zi) =7 +3+ %521, 1 <5 < |52

3,n=20
cpa(zi) = 2, n= 1mod3
1,n=20

It is easy to see that c,3 gives x,(Shack(W,, H
CW,,m)) <j 4+ 3 4+ [252] then we have j =
|252] so x(Shack(W,,H C W,,m)) < n +
1. From that coloring function of c,» we can say that
Xr(Shack(W,,H Cc W,,m)) < n+1forn > 6,
because of x.,.(Shack(W,,H C W,,m)) < n+1
and x3(Shack(W,,H C Wy,,m)) > n + 1 then
x(Shack(Wy, H C W,,m)) =n+ 1.

CONCLUSIONS

We have found the r—dynamic chromatic
number of Shack(W,,,v,m), Shack(W,,e,m) and
Shack(W,,, H C W,,,m). It is interesting to characterize
a property of any graph operation of shackle to have an
exact value or upper bound of their r—dynamic chromatic
numbers.

Conjecture 1. Let G=Shack (W,,H C W,,m) then
upper bound of vertex r-dynamic chromatic number is
Xr(Shack(Wy,v,m))=r+1forn>r
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