The Analysis of r-dynamic Vertex Colouring on Graph Operation Of Shackle

Novita Sana Susanti ${ }^{1,2}$, Dafik 1,3
${ }^{1}$ CGANT University of Jember Indonesia ${ }^{2}$ Mathematics Depart. University of Jember Indonesia ${ }^{3}$ Mathematics Edu. Depart. University of Jember Indonesia e-mail: novitasanasusanti@gmail.com

Abstract

Let G be a simple, connected and undirected graph and r, k be natural numbers. An edge coloring that uses k colors is a k-edge coloring. Thus a graph G can be described as a function $c: V(G) \rightarrow S$, where $|S|=k$, such that any two adjacent vertices receive different colors. An r-dynamic k-coloring is a proper k-coloring c of G such that $|c(N(v))| \geq \min \{r, d(v)\}$ for each vertex v in $V(G)$, where $N(v)$ is the neighborhood of v and $c(S)=\{c(v): v \in S\}$ for a vertex subset S. The r-dynamic chromatic number, written as $\chi_{r}(G)$, is the minimum k such that G has an r-dynamic k-coloring. In this paper, we will study the existence of r-dynamic k-coloring when G is shackle of wheel graph. As we know, that a shackle operation of H denoted by $\operatorname{shack}(H, v, n)$ is a shackle with vertex as the connector. We also can generated shackle graph with edge connector or subgraph as the connector.

Keywords-r-dynamic chromatic number, graph coloring, shackle graph

INTRODUCTION

According to Chartrand, an edge coloring of a graph G is an assignment of colors to the edges of G, one color to each edge. If adjacent edges are assigned distinct colors, then the edge coloring is a proper edge coloring. An r -dynamic proper k-coloring of a graph G is a proper coloring c from $V(G)$ to a set S of k colors such that $|c(N(v))| \geq \min \{r, d(v)\}$ for each vertex v in $V(G)$, where $c S=\{c(v): v \in S\}$ for a vertex subset S. The r-dynamic chromatic number of a graph G, written $\chi_{r}(G)$, is the minimum k such that G has an r -dynamic proper k -coloring. The dynamic chromatic number, $\chi(G)$, have been investigated in several papers, see, e.g.,[1], [2], [3], [4],[5] [6], [7],[8] for some references.

The following observation is useful to find the exact values of r-dynamic chromatic number.
Observation 1. Let $\delta(G)$ and $\Delta(G)$ be a minimum and maximum degree of a graph G, respectively. Then the followings hold

$$
\begin{aligned}
& \text { - } \chi_{r}(G) \geq \min \{\Delta(G), r\}+1, \\
& \text { - } \\
& \chi(G) \leq \chi_{2}(G) \leq \chi_{3}(G) \leq \cdots \leq \chi_{\Delta(G)}(G), \\
& \text { - } \\
& \chi_{r+1}(G) \geq \chi_{r}(G) \text { and if } r \geq \Delta(G) \text { then } \chi_{r}(G)= \\
& \\
& \chi_{\Delta(G)}(G) .
\end{aligned}
$$

THE RESULTS

We are ready to show our main theorems. There are three theorems found in this study. These deals r-dynamic chromatic number of $\operatorname{Shack}\left(W_{n}, v, m\right)$, Shack $\left(W_{n}, e, m\right)$ and Shack $\left(W_{n}, H \subset W_{n}, m\right)$

Theorem 1. Let $G=\operatorname{Shack}\left(W_{n}, v, m\right)$ be a vertex shackle of wheel graph $\left(W_{n}\right)$, the r-dynamic chromatic number for $n \geq 3$ is:

$$
\begin{gathered}
\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=\chi_{d}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)= \\
\left\{\begin{array}{l}
3, n \text { odd } \\
4, n \text { even }
\end{array}\right. \\
\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=\left\{\begin{array}{l}
4, n=0 \bmod 3 \\
5, n \text { otherwise }
\end{array}\right. \\
\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=r+1
\end{gathered}
$$

Proof. Let G be a Shack (W_{n}, v, m), is a connected graph with vertex set $V\left(\operatorname{shack}\left(W_{n}, v, m\right)\right)=\left\{x_{i}, 1 \leq\right.$ $i \leq m\} \cup\left\{y_{i, j}, 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$
and edge set $E\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=\left\{x_{i} y_{i, j}, 1 \leq i \leq\right.$ $m, 1 \leq j \leq n-1\} \cup\left\{y_{i, j} y_{i, j+1}, 1 \leq i \leq m, 1 \leq\right.$ $j \leq n-1\} \cup\left\{y_{i, 1} y_{i+1, j}, 1 \leq 7\right\}$. FThe order and $\frac{n-1}{2}$ size of
 dan $\left|E\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)\right|=2 n m$. By Observation 1, $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \left\{\Delta\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right), r\right\}$

To find the exact value of r-dynamic chromatic number of $\operatorname{Shack}\left(W_{n}, e, m\right)$, we define some cases, $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right), \chi_{2}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right), \ldots$, $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)$.

For $r=1$, the lower bound of the $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \{6,1\}=1$. And for $r=2$, the lower bound $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \{6,2\}=2$. We will proof that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 3$ by defining a map $c_{\alpha 1}: V\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following : $c_{\alpha 1}\left(x_{i}\right)=1,1 \leq i \leq m$

$$
c_{\alpha 1}\left(y_{i, j}\right)=\left\{\begin{array}{l}
2323 \ldots, i \text { odd, } n \\
\text { even, } 1 \leq i \leq m, 1 \leq j \leq n-1 \\
2323 \ldots, i \text { odd, } n \text { odd and even, } \\
1 \leq i \leq m, 1 \leq j \leq n-1
\end{array}, \begin{array}{l}
24322432 \ldots, i \text { even, } n \text { odd, } \\
1 \leq i \leq m, 1 \leq j \leq n-1
\end{array}\right.
$$

It is easy to see that $c_{\alpha 1} \operatorname{gives} \chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq$ 3 for n odd, but for n even, we could not avoid to have $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq 4$. From that coloring function of $c_{\alpha 1}$ we can say that $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 3$ for n odd, because of $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq 3$ and $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq 3$ then $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=$ 3. And for n even, $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 4$ and because of $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq 4$ and $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq 4$ then $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=$ 4. $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=4$, for n even. And also for $\chi_{d}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)$
$=3$, the lower bound of the $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \{6,3\}=3$. We will proof that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 4$ by defining a map $c_{\alpha 2}: V\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$,
by the following : $c_{\alpha 2}\left(x_{i}\right)=1,1 \leq i \leq m$

$$
c_{\alpha 2}\left(y_{i, j}\right)=\left\{\begin{array}{l}
2323 \ldots, n=3, i \text { odd, } \\
1 \leq i \leq m, 1 \leq j \leq n-1 \\
4343 \ldots, n=3, i \text { even, } \\
1 \leq i \leq m, 1 \leq j \leq n-1 \\
234 \ldots 23, n=0 \bmod 3, i \text { odd, } \\
1 \leq i \leq m, 1 \leq j \leq n-1 \\
342 \ldots 34, n=0 \bmod 3, i \text { even, } \\
1 \leq i \leq m, 1 \leq j \leq n-1 \\
234 \ldots 2345, n=1 \bmod 3, i \text { odd, } \\
: 1 \leq i \leq m, 1 \leq j \leq n-1 \\
: 3452 \ldots 342, n=1 \bmod 3, i \text { even, } \\
1 \leq i \leq m, 1 \leq j \leq n-1 \\
2345 \ldots, n=2 \bmod 3, i \text { even, } \\
1 \leq i \leq m, 1 \leq j \leq n-1
\end{array}\right.
$$

It is easy to see that $c_{\alpha 2}$ gives $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq$ 4 for $n=0 \bmod 3$, but for n otherwise, we could not avoid to have $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq 5$. From that coloring function of $c_{\alpha 3}$ we can say that $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 4$ for $n=0 \bmod 3$, because of $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq 3$ and $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq$ 4 then $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=4$. And for n otherwise, $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 5$ and because of $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq 5$ and $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq$ 5 then $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=5$.

For $r \geq 4$, the lower bound of the $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \{n, r\}=n$. We will proof that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq n+1$ by defining a map $c_{\alpha 3}: V\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following :

$$
\begin{gathered}
c_{\alpha 3}\left(x_{i}\right)=\left\{\begin{array}{l}
1, i=1 \bmod 3 \\
\left\lfloor\frac{n-2}{2}\right\rfloor, i=2 \bmod 3 \\
n+1, i=0 \bmod 3
\end{array}\right. \\
c_{\alpha 3}\left(y_{i, j}\right)=\left\{\begin{array}{l}
j+1,1 \leq j \leq\left\lfloor\frac{n-2}{2}\right\rfloor \\
a n d\left\lfloor\frac{n}{2}\right\rfloor \leq j \leq n \\
\left\lfloor\frac{n-2}{2}\right\rfloor+2, j=\left\lfloor\frac{n}{2}\right\rfloor \\
n+1, j=n
\end{array}\right.
\end{gathered}
$$

It is easy to see that $c_{\alpha 2}$ gives $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq$ $n+1$. From that coloring function of $c_{\alpha 3}$ we can say that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq n+$ 1 , because of $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq n+$ 1 and $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq n+1$ then $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=n+1$.
Theorem 2. Let $G=\operatorname{Shack}\left(W_{n}, e, m\right)$ be an edge shackle of wheel graph $\left(W_{n}\right)$, the r-dynamic chromatic number for $n \geq 4$ is:
$\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=\chi_{d}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=$
4, n odd
$\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=r+1$
Proof. Let G be a Shack (W_{n}, e, m), is a connected graph with vertex set $V\left(\operatorname{shack}\left(W_{n}, v, m\right)\right)=\left\{x_{i}, 1 \leq\right.$ $i \leq m+1\} \cup\left\{y_{i, j}, 1 \leq i \leq m, 1 \leq j \leq n-4\right\} \cup\left\{z_{i}, 1 \leq\right.$ $i \leq 2 m+1\}$ and edge set $E\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=$ $\left\{x_{i} x_{i+1}, 1 \leq i \leq m\right\}$. The order and size of $\operatorname{shack}\left(W_{n}, v, m\right)$ are $\left|V\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)\right|=n m-$ $m+2$ dan $\left|E\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)\right|=2 n m-m+$ 1). By Observation 1, $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq$ $\min \left\{\Delta\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right), r\right\}$

To find the exact value of r-dynamic chromatic number of $\operatorname{Shack}\left(W_{n}, v, m\right)$, we define some cases, namely $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right), \chi_{2}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right), \ldots$, $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)$. For $r=1$, the lower bound of the $\chi\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq \min \{6,1\}=1$. And for $r=2$, the lower bound $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \{6,2\}=2$.

We will proof that $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 3$ by defining a map $c_{\beta 1}: V\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following : $c_{\beta 1}\left(x_{i}\right)=23 \ldots 23,1 \leq i \leq m$ $c_{\beta 1}\left(z_{i}\right)=3121 \ldots 3121,1 \leq i \leq m$
$\int 2, j$ odd, n odd,
$1 \leq i \leq m, 1 \leq j \leq\left\lfloor\frac{n-4}{2}\right\rfloor$

- $2, j$ even, n odd,
' $1 \leq i \leq m,\left\lceil\frac{n-4}{2}\right\rceil \leq j \leq n-4$
- $2, j$ even, n even,
' $1 \leq i \leq m, 1 \leq j \leq\left\lfloor\frac{n-4}{2}\right\rfloor$
, $2, j$ odd, n even,
, $1 \leq i \leq m,\left\lceil\frac{n-4}{2}\right\rceil \leq j \leq n-4$
$c_{\alpha 1}\left(y_{i, j}\right)=\left\{\begin{array}{l}3, j \text { even, } n \text { odd, } \\ 1 \leq i \leq m, 1 \leq j \leq\left\lfloor\frac{n-4}{2}\right\rfloor\end{array}\right.$
- $3, j$ odd, n odd,
- $1 \leq i \leq m,\left\lceil\frac{n-4}{2}\right\rceil \leq j \leq n-4$
- $3, j$ odd, n even,
- $1 \leq i \leq m, 1 \leq j \leq\left\lfloor\frac{n-4}{2}\right\rfloor$
- $3, j$ even, n even,
- $1 \leq i \leq m,\left\lceil\frac{n-4}{2}\right\rceil \leq j \leq n-4$
'
($4,1 \leq i \leq m, j=\left\lceil\frac{n-4}{2}\right\rceil$

It is easy to see that $c_{\beta 1}$ gives $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq$ 3 for n even, but for n odd, we could not avoid to have $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 4$. From that coloring function of $c_{\beta 1}$ we can say that $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 3$ for n even, because of $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 3$ and $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq 3$ then $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=$ 3. And for n odd, $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 4$ and because of $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq 4$ and $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq 4$ then $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=$ 4. $\chi\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)=4$, for n even. And also for $\chi_{d}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)$

For $r \geq 3$, the lower bound of the $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \geq \min \{n, r\}=n$. We will proof that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq n+1$ by defining a map $c_{\beta 2}: V\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following : $c_{\beta 2}\left(y_{i, j}\right)=j+5,1 \leq i \leq n-4$ $c_{\beta 2}\left(x_{i}\right)=426 \ldots 426,1 \leq i \leq m+1$

$$
c_{\beta 2}\left(z_{i}\right)=\left\{\begin{array}{l}
1, n=0 \bmod 3 \\
3, n=1 \bmod 3 \\
5, n=0 \bmod 3
\end{array}\right.
$$

It is easy to see that $c_{\beta 2}$ gives $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)$ $\leq j+5$, for $1 \leq i \leq n-4$. So when $\mathrm{j}=\mathrm{n}-4$, we have $\chi_{r}\left(\operatorname{Shack}\left(\bar{W}_{n}, e, \bar{m}\right)\right) \leq n+1$ From that coloring function of $c_{\beta 2}$ we can say that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right) \leq$ $n+1$ for, because of $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \leq$ $n+1$ and $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right) \geq n+1$ then $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=n+1$.

Theorem 3. Let $G=\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)$ be a shackle subgraph of wheel graph $\left(W_{n}\right)$, the r-dynamic chromatic number for $n \geq 6$ is:

$$
\begin{gathered}
\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)= \\
\chi_{d}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)=\right. \\
\left\{\begin{array}{l}
3, n \text { even } \\
4, n \text { odd }
\end{array}\right. \\
\chi_{3}\left(\operatorname{Shack}\left(\left(W_{n}, H \subset W_{n}, m\right)\right)=\left\{\begin{array}{l}
4, n=6 \\
5, n \text { otherwise }
\end{array}\right.\right. \\
\chi_{r}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=r+1 \text { for } n \geq r
\end{gathered}
$$

Proof. Let G be a Shack $\left(W_{n}, H \subset W_{n}, m\right)$, is a connected graph with vertex set $V\left(\operatorname{shack}\left(W_{n}, v, m\right)\right)=$
$\left\{z_{i}, 1 \leq i \leq 2 m\right\} \cup\left\{x_{i, j}, 1 \leq i \leq m, 1 \leq\right.$ $\left.j \leq\left\lfloor\frac{n-2}{2}\right\rfloor\right\} \cup\left\{y_{i, j}, 1 \leq i \leq m, 1 \leq j \leq\right.$ $\left.\left\lceil\frac{n-2}{2}\right\rceil\right\}$ and edge set $E\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=$ $\left\{z_{1} y_{1,1}\right\} \cup\left\{z_{1} x_{1,1}\right\} \cup\left\{x_{i, j} x_{i, j+1}, 1 \leq i \leq m 1 \leq\right.$ $\left.j \leq\left\lfloor\frac{n-4}{2}\right\rfloor\right\} \cup\left\{x_{i, j} x_{i+1,1}, 1 \leq i \leq m 1 \leq j \leq\right.$ $\left.\left\lfloor\frac{n-4}{2}\right\rfloor\right\} \cup\left\{y_{i, j} y_{i, j+1}, 1 \leq i \leq m 1 \leq j \leq\left\lfloor\frac{n-4}{2}\right\rfloor+\right.$ $1\} \cup\left\{y_{i, 1} z_{i+1}, 1 \leq i \leq m\right\} \cup\left\{y_{i, 1} z_{i}, 2 \leq i 2 n-2\right\} \cup$ $\left\{x_{i, 1} z_{i+1}, 2 \leq i m\right\} \cup\left\{x_{i, 1} z_{i}, 2 \leq i 2 n-2\right\}$. The order and size of shack $\left(W_{n}, H \subset W_{n}, m\right)$ are $\mid V\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.\left.W_{n}, m\right)\right) \mid=n m-3 m+5$ dan $\left|E\left(\operatorname{Shack}\left(W_{n}, e, m\right)\right)\right|=$ $2 n m-5 m+5)$. By Observation 1, $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.W_{n}, m\right) \geq \min \left\{\Delta\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right), r\right\}$

To find the exact value of r-dynamic chromatic number of $\operatorname{Shack}\left(W_{n}, v, m\right)$, we define some cases, namely $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right), \chi_{2}\left(\operatorname{Shack}\left(W_{n}, H \quad \subset\right.\right.$ $\left.\left.W_{n}, m\right)\right), \ldots, \chi_{r}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)$. For $r=1$, the lower bound of the $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \geq$ $\min \{6,1\}=1$. And for $r=2$, the lower bound $\chi\left(S h a c k\left(W_{n}, H \subset W_{n}, m\right)\right) \geq \min \{6,2\}=2$. We will proof that $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq 3$ by defining a map $c_{\gamma 1}: V\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following :

$$
\begin{gathered}
c_{\gamma 1}\left(z_{i}\right)=\left\{\begin{array}{l}
213 \ldots, n=6 \\
2121 \ldots, n \geq 7
\end{array}\right. \\
c_{\gamma 1}\left(y_{i, j}\right)=\left\{\begin{array}{l}
321 \ldots, n=6 \\
3231 \ldots, n \text { even } \\
3434 \ldots, n \text { odd }
\end{array}\right. \\
c_{\gamma 1}\left(x_{i, j}\right)=\left\{\begin{array}{l}
321 \ldots, n=6 \\
3231 \ldots, \\
3434 \ldots, n \text { even }
\end{array}\right.
\end{gathered}
$$

It is easy to see that $c_{\gamma 1}$ gives $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.W_{n}, m\right)$) 3 for $n=$ odd, but for neven , we could not avoid to have $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.W_{n}, m\right)$) \leq. From that coloring function of $c_{\gamma 1}$ we can say that $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq$ 3 for $n=o d d$, because of $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.\left.W_{n}, m\right)\right) \leq 3$ and $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \geq$ 3 then $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=3$. And for n even, $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq 4$ and because of $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq$ 4 and $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \geq 4$ then $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=4 . \quad$ So is the $\chi_{2}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)$

For $r=3$, the lower bound of the $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.\left.W_{n}, m\right)\right) \geq \min \{6,3\}=3$. We will proof that $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq 4$ by defining a map $c_{\gamma 2}: V\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following : $c_{\gamma 2}\left(z_{i}\right)=2121 \ldots, \quad 1 \leq i \leq$ $2 m-1$

$$
\begin{aligned}
& c_{\gamma 2}\left(y_{i, j}\right)=\left\{\begin{array}{l}
3434 \ldots, \\
345345 \ldots, n \geq 6
\end{array}\right. \\
& c_{\gamma 2}\left(x_{i, j}\right)=\left\{\begin{array}{l}
4343 \ldots, \\
345345 \ldots, n \geq 6
\end{array}\right.
\end{aligned}
$$

It is easy to see that $c_{\gamma 2}$ gives $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.W_{n}, m\right)$) ≤ 4 for $n=6$, but for $n \geq 6$, we could not avoid to have $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.W_{n}, m\right)$) ≤ 5. From that coloring function of $c_{\gamma 2}$ we can say that $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq$ 4 for $n=6$, because of $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.\left.W_{n}, m\right)\right) \leq 4$ and $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \geq$ 4 then $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=4$. And for $n \geq 6, \chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right) \leq 5\right.$
and because of $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq$ 5 and $\chi\left(\operatorname{Shack}\left(W_{n}, H \quad \subset W_{n}, m\right)\right) \geq 5$ then $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=5$.

For $r \geq 4$, the lower bound of the $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset\right.\right.$ $\left.\left.W_{n}, m\right)\right) \geq \min \{n, r\}=n$. We will proof that $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq n+1$ by defining a map $c_{\gamma 3}: V\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \rightarrow\{1,2, \ldots, k\}$ where $n \geq 3$, by the following :
$c_{\gamma 3}\left(z_{i}\right)=j+3,1 \leq j \leq\left\lfloor\frac{n-2}{2}\right\rfloor$
$c_{\gamma 3}\left(z_{i}\right)=j+3+\left\lceil\frac{n-2}{2}\right\rceil, 1 \leq j \leq\left\lfloor\frac{n-2}{2}\right\rfloor$

$$
c_{\beta 2}\left(z_{i}\right)=\left\{\begin{array}{l}
3, n=0 \bmod 3 \\
2, n=1 \bmod 3 \\
1, n=0 \bmod 3
\end{array}\right.
$$

It is easy to see that $c_{\gamma 3}$ gives $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, H\right.\right.$ $\left.\left.\subset W_{n}, m\right)\right) \leq j+3+\left\lceil\frac{n-2}{2}\right\rceil$ then we have $j=$ $\left\lfloor\frac{n-2}{2}\right\rfloor$ so $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, H^{2} \subset W_{n}, m\right)\right) \leq n+$ 1. From that coloring function of $c_{\gamma 2}$ we can say that $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq n+1$ for $n \geq 6$, because of $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \leq n+1$ and $\chi_{3}\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right) \geq n+1$ then $\chi\left(\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)\right)=n+1$.

CONCLUSIONS

We have found the r-dynamic chromatic number of $\operatorname{Shack}\left(W_{n}, v, m\right), \operatorname{Shack}\left(W_{n}, e, m\right)$ and $\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)$. It is interesting to characterize a property of any graph operation of shackle to have an exact value or upper bound of their r-dynamic chromatic numbers.

Conjecture 1. Let $G=\operatorname{Shack}\left(W_{n}, H \subset W_{n}, m\right)$ then upper bound of vertex r-dynamic chromatic number is $\chi_{r}\left(\operatorname{Shack}\left(W_{n}, v, m\right)\right)=r+1$ for $n \geq r$

REFERENCES

[1] M. Alishahi, "Dynamic chromatic number of regular graphs", Discrete Appl. Math., vol. 160, pp. 2098-2103, 2012.
[2] M. Alishahi, "On the dynamic coloring of graphs", Discrete Appl. Math., vol. 159, pp. 152-156, 2011.
[3] S. Akbari, M. Ghanbari and S. Jahanbekam, "On the list dynamic coloring of graphs", Discrete Appl. Math., vol. 157, pp. 3005-3007, 2009.
[4] S. Akbari, M. Ghanbari and S. Jahanbekam, "On the dynamic chromatic number of graphs", in: Combinatorics and Graphs, in: Contemp. Math., Amer. Math. Soc., vol. 531, pp. 1-18, 2010.
[5] S. Jahanbekama, J. Kimb, O. Suil and D. B. Westd, "On r-dynamic Coloring of Graphs", Discrete Applied Mathematics, 2016, In Press.
[6] B. Montgomery, "Dynamic Coloring of Graphs", Ph.D Dissertation, West Virginia University, 2001.
[7] H.J. Lai, B. Montgomery and H. Poon, "Upper bounds of dynamic chromatic number", Ars Combin., vol. 68, pp. 193-201, 2003.
[8] A. Taherkhani, " r-Dynamic Chromatic Number of Graphs", arXiv:1401.6470v1 [math.CO], Iran: Dept of Math, Institutu for Basic Studies and Advance Sciense, 2014.

