On The Metric Dimension with Non-isolated Resolving Number of Some Exponential Graph

S.M. Yunika ${ }^{1,2}$, Slamin 1,4, Dafik 1,3, Kusbudiono ${ }^{1,2}$
${ }^{1}$ CGANT University of Jember Indonesia ${ }^{2}$ Mathematics
Depart. University of Jember Indonesia ${ }^{3}$ Mathematics Edu.
Depart. University of Jember Indonesia
${ }^{4}$ System Information. Depart. University of Jember e-mail: nichachapri@gmail.com

Abstract

Let $w, w \in G=(V, E)$. A distance in a simple, undirected and connected graph G, denoted by $d(v, w)$, is the length of the shortest path between v and w in G. For an ordered set $W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{k}\right\}$ of vertices and a vertex $v \in G$, the ordered k-vector $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$ is representations of v with respect to W. The set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W. The metric dimension $\operatorname{dim}(G)$ of G is the minimum cardinality of resolving set for G. The resolving set W of graph G is called non-isolated resolving set if subgraph W is induced by non-isolated vertex. While the minimum cardinality of non-isolated resolving set in graph is called a non-isolated resolving number, denoted by $\operatorname{nr}(G)$. In this paper we study a metric dimension with non-isolated resolving number of some exponential graph.

Keywords-Metric dimension, Non-isolated resolving number, Exponential graph.

INTRODUCTION

A graph G is pair set (V, E) where V is not empty set of element called vertex, and E a set unordered pair of two vertices $(v 1, v 2)$ where $v 1, v 2 \in V$, is called edges[1$]$]. V is called vertex set o G, and E is called edge set of $G[2]$. In the year of 1975, concept metric dimension introduced by Slater [3]. This concept show of resolving set known as locating set. Resolving set W defined as resolving of vertices in graph G so that for every vertices in G produce distance different of every vertex in W. Dimension metric is cardinality minimum of resolving set of graph G which denoted by $\operatorname{dim}(G)$ [4]. For sequence resolving $W=$ $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ of vertex set in graph connected G and vertex v in G, k-vector (k-tuple sequences) $r=(v \mid W)=$ $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)[5]$. Resolving set W of graph G is called non-isolated resolving set if subgraph W induced by isolated vertices. Cardinality minimum of non-isolated resolving number denoted by $n r(G)$ [6]. Related research metric dimension is [7], [8], [9], [10].In this research resulted metric dimension with non-isolated resolving number of some exponential graph.

THE RESULTS

We are ready to show our main theorems. There are two theorems found in this study. These deals with exponential graph $L_{n}^{P_{m}}$ and $S_{n}^{P_{m}}$
Theorem 1. For $n \geq 3$ and $m \geq 4$, the metric dimension and non-isolated resolving number of $L_{n}^{P_{m}}$ are $\operatorname{dim}\left(L_{n}^{P_{m}}\right)=2$ and $n r\left(L_{n}^{P_{m}}\right)=m$.

Proof. A exponential graph of $L_{n}^{P_{m}}$ is a connected graph with vertex set $V\left(L^{P_{m}}\right.$

$$
\underset{\leq}{n} \mathbf{\leq})=\left\{x_{i}, y_{i}, z_{i, j} ; 1 \leq i\right.
$$

$n 1 \leq j \leq m-2\} \cup\left\{x_{i, j}, y_{i, j} ; 1 \leq i \leq n-1 ; 1\right.$
$\leq j \leq m-2\}$, and edge set $E\left(L_{n}^{P_{m}}\right)=\left\{x_{i} x_{i, 1}\right.$,
$y_{i} y_{i, 1} ; 1 \leq$
$i \leq n-1\} \cup\left\{y_{i} z_{i, 1} ; 1 \leq i \leq n-1 ; 1 \leq i\right.$ $\leq n-1\} \cup\left\{x_{i, j} x_{i, j+1}, y_{i, j} y_{i, j+1} ; 1 \leq i \leq n-\right.$

$$
1 ; 1 \leq
$$

$j \leq m-3\} \cup\left\{z_{i, j} z_{i, j+1} ; 1 \leq i \leq n ; 1 \leq j \leq\right.$ $m-3\} \cup\left\{y_{i+1} y_{i, m-2}, x_{i+1} x_{i, m-2} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{i} z_{i, m-2} ; 1 \leq i \leq n\right\}$. Thus $\left|V\left(L_{n}^{P_{m}}\right)\right|=3 n m-$
$2 m-4 n+4$ and $\left|E\left(L_{n}^{P_{m}}\right)\right|=3 n m-2 m-3 n+2$.
For $n \geq 3$ and $m \geq 4$, the minimum cardinality of resolving set is two, If it is one then there will be the same representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to
representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to W are as follow:

```
\(r\left(x_{i} \mid W\right)=(m i-i, m i-m-i+1) ; 1 \leq i \leq n\)
\(r\left(y_{i} \mid W\right)=(m i-m-i+1, m i-i) ; 1 \leq i \leq n\)
\(r\left(x_{i, j} \mid W\right)=(m+3 i+j-4,3 i+j-3) ; 1 \leq i \leq\)
        \(n-1 ; 1 \leq j \leq m-2\)
\(r\left(y_{i, j} \mid W\right)=\{(3 i+j-3, m+3 i+j-4) ; 1 \leq i\)
\(\leq\)
        \(n-1 ; 1 \leq j \leq m-2\}\)
\(r\left(z_{i, j} \mid W\right)=\{(3 i+j-3,3 i-j) ; 1 \leq i \leq n ; 1\)
\(\leq\)
        \(j \leq m-2\}\)
```

It is easy to see that $L_{n}^{P_{m}}$ has a different representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to W.
Therefore) $\boldsymbol{\operatorname { d i m }} 2 L^{P_{1 t}}$ concludes that $\operatorname{dim}\left(L_{n}^{P_{m}}\right)=2$

The next it will be showed by $n r L_{n}^{P_{m}}$. Based on observations Arumugam which state that $\operatorname{nr}\left(L_{n}^{P_{m}}\right) \geq$ $\operatorname{dim}\left(L_{n}^{P_{m}}\right)$.So That $n r\left(L_{n}^{P_{m}}\right) \geq \operatorname{dim}\left(L_{n}^{P_{m}}\right)=2$, however $n r\left(L_{n}^{P_{m}}\right) \neq 2$ because it does not fulfill the character non-isolated resolving set that $W=\left\{x_{1}, y_{1}\right\}$ it consists of dots which is not connected each other. For $n \geq 3$ and $m \geq 4$, the minimum cardinality of non-isolated resolving set is m, otherwise there will be the same representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to W^{\prime}. Thus the lower bound of $\mathbf{n r}\left(L_{n}^{P_{m}}\right) \geq m$. We will show that $\mathbf{n r}\left(L_{n}^{P_{m}}\right) \leq$ m, by choosing $W^{\prime}=\left\{x_{1}, y_{1}, z_{1, j} ; 1 \leq j \leq m-2\right\}$ as a non-isolated resolving set. Clearly that cardinality of $\left|W^{\prime}\right|=m$. The representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to W^{\prime} are as follow:

$$
\begin{aligned}
r\left(x_{i} \mid W\right)= & \left\{\left(a_{i, k}\right) ; a_{i, k}=m i-i-k+1 ; 1 \leq\right. \\
& \quad i \leq n ; 1 \leq k \leq m\} \\
r\left(y_{i} \mid W\right)= & \left\{\left(b_{i, k}\right) ; b_{i, k}=m i-m-i-k ; 1 \leq\right. \\
& i \leq n ; 1 \leq k \leq m\} \\
r\left(x_{i, j} \mid W\right)= & \left\{\left(a_{i, j, k}\right) ; a_{i, j, k}=m i-i+j-k+1 ;\right. \\
& 1 \leq i \leq n-1 ; 1 \leq j \leq m-2 ; 1 \leq \\
& k \leq m\} \\
r\left(y_{i, j} \mid W\right)= & \left\{\left(b_{i, j, k}\right) ; b_{i, j, k}=m i-i-m+j+k ;\right. \\
& 1 \leq i \leq n-1 ; 1 \leq j \leq m-2 ; 1 \leq \\
& k \leq m\} \\
r\left(z_{i, j} \mid W\right)= & \left\{\left(c_{i, j, k}\right) ; 1 \leq i \leq n ; 1 \leq j \leq\right. \\
& m-2 ; 1 \leq k \leq m\}
\end{aligned}
$$

where

It is easy to see that $L_{n}^{P_{m}}$ has a different representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to W^{\prime}.
Therefore $\leq \mathbf{m m}\left(\right.$. It ${ }^{\text {Pconcludes that }} \mathbf{n r}\left(L_{n}^{P_{m}}\right)=m$ for n ≥ 3 and $m \geq 4$.
Theorem 2. For $n \geq 3$ and $m \geq 4$, the metric dimension and non-isolated resolving number of $S_{n}^{P_{m}}$ are $\operatorname{dim}\left(L_{n}^{P_{m}}\right)=n-1$ and $n r\left(L_{n}^{P_{m}}\right)=n$.

Proof. A exponential graph of $S_{n}^{P_{m}}$ is a connected graph with vertex set $V\left(S_{n}^{P_{m}}\right)=\{A\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\}$, and edge set $E\left(S_{n}^{P_{m}}\right)=$ $\left\{A x_{i, 1}, x_{i} x i, m-2 ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j} x_{i, j+1} ; 1 \leq i \leq\right.$ $n ; 1 \leq j \leq m-3\}$. Thus $\left|V\left(S_{n}^{P_{m}}\right)\right|=n+n m-2 n+1$ and $\left|E\left(S_{n}^{P_{m}}\right)\right|=n m-n$.

For $n \geq 3$ and $m \geq 4$, the minimum cardinality of resolving set is $n-1$, otherwise there will be the same representation of every $v \in V\left(S_{n}^{P_{m}}\right)$ with respect to W. Thus the lower bound of $\operatorname{dim}\left(S_{n}^{P_{m}}\right) \geq n-1$. We will show that $\operatorname{dim}\left(S_{n}^{P_{m}}\right) \leq n-1$, by choosing $W=$ $\left\{x_{i, 1} ; 1 \leq i \leq n-1\right\}$ as a resolving set. Clearly that cardinality of $|W|=n-1$. The representation of every $v \in V\left(S_{n}^{P_{m}}\right)$ with respect to W are as follow:
$r(A \mid W)=\left\{\left(a_{k}\right) ; a_{k}=1 ; 1 \leq k \leq n-1\right\}$
$r\left(x_{i} \mid W\right)=\left\{\left(a_{i, k}\right) ; 1 \leq i \leq \bar{n} ; 1 \leq k \leq n-1\right\}$
where

$$
a_{i, k}= \begin{cases}m-2, & \text { for } i=k \\ m, & \text { for } i \text { and } k \text { other }\end{cases}
$$

$r\left(x_{i, j} \mid W\right)=\left\{\left(b_{i, j, k}\right) ; 1 \leq i \leq n ; 1 \leq j \leq\right.$ $m-2 ; 1 \leq k \leq n-1\}$
where

$$
b_{i, j, k}= \begin{cases}j-1, & \text { for } 1 \leq i \leq n-1 \\ & 1 \leq j \leq m-2 ; k=i \\ j+1, & \text { for } 1 \leq i \leq n \\ & 1 \leq j \leq m-2 ; k \neq i\end{cases}
$$

It can be seen that every vertex of graph $S_{n}^{P_{m}}$ has a different representation to W, so the cardinality minimum resolving set of graph $S_{n}^{P_{m}}$ which chosen is $|W|=$ $\left|\left\{x_{i, 1} ; 1 \leq i \leq n-1\right\}\right|=n-1$ or $\operatorname{dim}\left(S_{n}^{P_{m}}\right) \leq n-1$. Therefore proved that $\operatorname{dim}\left(S_{n}^{P_{m}}\right)=n-1$ for $n \geq 3$ and $m \geq 4$.

The next it will be showed by $n r S_{n}^{P_{m}}$. Based on observations Arumugam which state that $n r\left(S_{n}^{P_{m}}\right) \geq$ $\operatorname{dim}\left(S_{n}^{P_{m}}\right)$. So That $\operatorname{nr}\left(S_{n}^{P_{m}}\right) \geq \operatorname{dim}\left(S_{n}^{P_{m}}\right)=n-1$, however $n r\left(S_{n}^{P_{m}}\right) \neq n-1$, because it does not the character non-isolated resolving set that $W=\left\{x_{i, 1} ; 1 \leq\right.$
$i \leq n-1\}$ it consist of vertex which is not connected each other. For $n \geq 3$ and $m \geq 4$, the minimum cardinality of non-isolated resolving set is n, otherwise there will be the same representation of every $v \in V\left(S_{n}^{P_{m}}\right)$ with respect to W^{\prime}. Thus the lower bound of $\operatorname{dim}\left(S_{n}^{P_{m}}\right) \geq n$. We will show that $\mathbf{n r}\left(S_{n}^{P_{m}}\right) \leq n$, by choosing $W^{\prime}=\left\{A, x_{i, 1} ; 1 \leq\right.$ $i \leq n-1\}$ as a non-isolated resolving set. Clearly that cardinality of $\left|W^{\prime}\right|=n$. The representation of every $v \in V\left(S_{n}^{P_{m}}\right)$ with respect to W^{\prime} are as follow:
$r\left(A \mid W^{\prime}\right)=\left\{\left(a_{j}\right) ; a_{j}=1 ; 1 \leq j \leq n-1\right\}$
where

$$
a_{k}= \begin{cases}0, & \text { for } k=1 \\ \end{cases}
$$

1, for $2 \leq k \leq n-1$
$r\left(x_{i} \mid W^{\prime}\right)=\left\{\left(b_{i, k}\right) ; 1 \leq i \leq n ; 1 \leq k \leq n-1\right\}$
where $\quad m-2$, for $1 \leq i \leq n-1 ; k=i+1$

$$
\quad b_{i, k}= \begin{cases}m-1, & \text { for } i=k \\ m, & \text { for } i \text { and } k \text { other } \\ =\left\{\left(x_{i, j} \mid W^{\prime}\right)\right. & \left\{\left(c_{i, j, k}\right) ; 1 \leq i \leq n ; 1 \leq j \leq\right. \\ m-2 ; 1 \leq k \leq n-1\}\end{cases}
$$

where

$$
c_{i, j, k}= \begin{cases}j, & \text { for } 1 \leq i \leq n ; 1 \leq j \leq m-2 \\ j-1, & \text { for } 1 \leq i \leq n-1 ; 1 \leq j \leq \\ & m-2 ; k=i+1 \\ j+1, & \text { for } 1 \leq i \leq n ; 1 \leq j \leq m-2 \\ k \neq 1 \text { and } k \neq i+1\end{cases}
$$

It is easy to see that $S_{n}^{P_{m}}$ has a different representation of every $v \in V\left(L_{n}^{P_{m}}\right)$ with respect to W^{\prime}. Therefore $\mathbf{n r}\left(S_{n}^{P_{m}}\right) \leq n$. It concludes that $\mathbf{n r}\left(S_{n}^{P_{m}}\right)=n$ for $n \geq 3$ and $m \geq 4$.

CONCLUDING REMARKS

We have shown the metric dimension number and metric dimension non-isolated resolving number of exponential graph, namely $L_{n}^{P_{m}}$ and $S_{n}^{P_{m}}$. The results show that the metric dimension numbers and metric dimension non-isolated resolving numbers attain the best lower bound. However we have not found the sharpest lower bound for general graph, therefore we proposed the following open problem.

ACKNOWLEDGEMENT

We gratefully acknowledge the support from DP2M research grant Fundamental and CGANT - University of Jember of year 2016.

REFERENCES

[1] F. Harary and R. A. Melter, "On the metric dimension of a graph", Ars Combin, issue 2, pp. 191-195, 1976.
[2] N. Hartsfield and G. Ringel, "Pearls in Graph Theory", London: Accademic Press Limited, 1994.
[3] G. Chartrand and L. Lesniak, "Graph and Digraph, California: Pasifik Graw, 1986.
[4] F. Harary, "Graph Teory", Wesley Publishing Company, Inc, 1969.
[5] C. Hernando, et al., "On The Metric Dimension of Some Families of Graphs". Preprint.
[6] P. J. B. Chitra and S. Arumungan, "Resolving Sets Without Isolted Vertices", India: Kalasalingan University, 2000.
[7] M. Feng, et al., "On the metric dimension of line graphs", Original Research Article Discrete Applied Mathematics, vol. 161, issue 6, pp. 802-805, 2013.
[8] C. Grigorious, et al., "On the Metric Dimension of Circulant and Harary Graphs", Original Research Article Applied Mathematics and Computation, vol. 248, pp. 47-54, 2014.
[9] M. Imran, et al., "On the Metric Dimension of Circulant Graphs", Original Research Article Applied Mathematics Letters, vol. 25, issue 3, pp. 320-325, 2012.
[10] I. G. Yero, et al., "On the metric dimension of corona product graphs". Original Research Article Computers and Mathematics with Applications", vol. 61, issue 9, pp. 2793-2798, 2011.

