

Dwi Agustin Retno Wardani², Dafik^{1,3}, Antonius C. Prihandoko^{1,4}, Arika I. Kristiana^{1,3}

¹CGANT University of Jember Indonesia
 ²Mathematics Depart. University of Jember Indonesia
 ³Mathematics Edu Depart. University of Jember Indonesia
 ⁴System Information. Depart. University of Jember Indonesia
 e-mail: 2i.agustin@gmail.com

Abstract—Given that two natural numbers r, k. By a proper total k-coloring of a graph G, we mean a map $c : V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$, such that any two adjacent vertices and incident edges receive different colors. A total r-dynamic coloring is a proper k-coloring c of G, such that $\forall v \in V(G), |c(N(v))| \ge \min\{r, d(v) + |N(v)|\}$ and $\forall e \in E(G), |c(N(e))| \ge \min\{r, d(v) + d(u)\}$. The total r-dynamic chromatic number, written as $\chi_r^{"}(G)$, is the minimum k such that G has an r-dynamic total k-coloring. A total r-dynamic coloring is a natural extension of r-dynamic coloring in which we consider more condition of the concept, namely not only assign a color on the vertices as well as on the edges. Consequently, this study will be harder. In this paper, we will initiate to analyze a total r-dynamic of an edge comb product of two graphs, denoted by $H \supseteq K$, where H is path graph and K is any special graph. The result shows that the total r-dynamic chromatic number of $P_n \supseteq K$.

Keywords—Total *r*-dynamic coloring, edge comb product of graphs, Chromatic number.

INTRODUCTION

Let G be a simple, connected and undirected graph. By a proper total k-coloring of a graph G, we mean a map $c : V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$, such that any two adjacent vertices and incident edges receive different colors [1]. Azizah *et al.* in [2] defined a total r-dynamic coloring is a proper k-coloring c of G, such that

1.
$$\forall v \in V(G), |c(N(v))| \ge \min[r, d(v) + |N(v)|]$$
 and

2.
$$\forall e = uv \in E(G), |c(N(e))| \ge \min[r, d(v) + d(u)]$$

The total r-dynamic chromatic number, written as $\chi_r^{\circ}(G)$, is the minimum k such that G has an r-dynamic total k-coloring. A total r-dynamic coloring is a natural extension of r-dynamic coloring in which we assign a color on the vertices as well as on the edges. In this paper, we will initiate to analyze a total r-dynamic of an edge comb product of two graphs, denoted by $H \supseteq K$, where H is star graph and K is any special graph.

Saputro *et.* al firstly introduced a comb product of graph in [3]. Let H and K be two connected graphs. Let o be a vertex of K. The comb product between H and K, denoted by $H \triangleright K$, is a graph obtained by taking one copy of H and |V(H)| copies of K and grafting the *i*-th copy of K at the vertex o to the *i*-th vertex of H. By the definition of comb product, we can say that $V(H \triangleright K) = \{(a, v) | a \in V(H), v \in V(K)\}$ and $(a, v)(b, w) \in E(H \triangleright K)$ whenever a = b and $vw \in E(K)$, or $ab \in E(H)$ and v = w = o.

A natural extension of comb product of graph is an edge comb product of graph. Let H and K be two connected graphs. Let e be an edge of K. The edge comb product between H and K, denoted by $H \supseteq K$, is a graph obtained by taking one copy of H and |E(H)|copies of K and grafting the *i*-th copy of K at the edge e to the *i*-th edge of H. By the definition of edge comb product, we can say that $V(G \ge H) = \{(a, v) | a \in$ $V(G); v \in V(H) \} \cup \{ (a, v, z) | a \in V(G); v, z \in V(H) \}$ and if v = w and z = y, y = w then $E(G \ge$ $H) = \{(a, v)(b, w, z) | a, b \in V(G); v, w, z \in V(H)\} \cup$ $\{(b,w,z)(c,w,y)|b,c \ \in \ V(G); z,w,y \ \in \ V(H)\} \ \cup$ $\{(c, w, y)(d, v) | c, d \in V(G); v, w, y \in V(H)\}$ if a = bthen $E(G \supseteq H) = \{(a, v)(b, w) | a, b \in V(G); v, w \in$ V(H) so $p = |V(G \ge H)| = q_1(p_2 - 2) + p_1$ and $q = |E(G \ge H)| = q_1 q_2.$

For r = 1, it is easy to see that the total 1-dynamic of any connected graph satisfies $\chi''(G) \ge \triangle(G) + 1$,

Mathematics

On The Total r-dynamic Coloring of Edge Comb Product graph $G \trianglerighteq H$

where $\triangle(G)$ is the maximum degree of graph G, see [1]]. Behzad and Vizing [4] also proved that the total 1-dynamic chromatic number for every graph G satisfies $\triangle(G) + 1 \le \chi''(G) \le \triangle(G) + 2$. However, we have not fixed the lower bound of the total r-dynamic of any connected graph. But the following observation holds:

Observation 1. Let $\Delta(G)$ be a maximum degree of a graph G. the total r-dynamic of any connected graph satisfies the following $\chi''(G) \leq \chi''_d(G) \leq \chi''_3(G) \leq \cdots \leq$

 $\chi_r''(G).$

THE RESULTS

We are ready to show our main theorems. There are two theorems found in this study that is exponential graph $P_n \supseteq C_m$ and $P_n \supseteq W_m$.

Theorem 1. For $n \ge 3$, $m \ge 3$, and $r = 2\Delta$ the total *r*-dynamic chromatic number of edge comb product graph $G = (P_n \ge C_m)$ is:

$$\chi_r''(P_n \ge C_m) = \begin{cases} \Delta + 1; & \text{for } 1 \le r \le \delta + 1\\ 2\Delta; & \text{for } \delta + 2 \le r \le 2\Delta - 1\\ 2\Delta + 1; & \text{for } r \ge 2\Delta \end{cases}$$

Proof. An edge comb product of path graph with cycle graph, denoted by $(\mathbf{P_n} \supseteq \mathbf{C_m}), n \ge 3$ and $m \ge 3$, is a connected graph with vertex set $V(\mathbf{P_n} \supseteq \mathbf{C_m}) = \{x_i; 1 \le i \le n\} \cup \{x_{i,j}; i \le i \le n-1; 1 \le j \le m-2\}$, and edge set $E(P_n \supseteq C_m) = \{x_ix_{i+1}; 1 \le i \le n-1\} \cup \{x_ix_{i,j}\}; 1 \le i \le n-1; j = 1\} \cup \{x_{i,j}x_{i,j+1}; 1 \le i \le n-1; 1 \le j \le m-3\} \cup \{x_{i,j}x_{i+1}; 1 \le i \le n-1; j = m-2\}$. The order and size of $(\mathbf{P_n} \supseteq \mathbf{C_m}), n \ge 3, m \ge 3$ are $|V(P_n \supseteq C_m)| = nm - m - n + 2$, $|E(P_n \supseteq C_m)| = mn - m$, $\Delta(G) = 4$ and $\delta = 2$.

Case 1. For $\chi''_r(P_n \supseteq C_m) = \Delta + 1$ it will be showed that $\chi''_r(P_n \supseteq C_m) \ge \Delta + 1$, suppose $\chi''_r(P_n \supseteq C_m) < \Delta + 1$ let $\chi''_r(P_n \supseteq C_m) = \Delta$ then there is incident edge which has same color. As illustration see the coloring pattern with $\chi''_r(P_n \supseteq C_m) = \Delta$ we can see the function:

$$c_1(x_i) = i \mod 3; c_1(x_i x_{i+1}) = i + 2 \mod 3; c_1(x_i x_{i,1}) = 5; c_1(x_{i,m-2} x_i) = 4...;$$

$$c_{1}(x_{i,j}) = \begin{cases} 3; & \text{if } j \equiv 1 \text{ so } i \equiv 1 \mod 3 \\ 1; & \text{if } j \equiv 1 \mod 2 \text{ and } j \neq 1 \text{ so} \\ i \neq 0 \mod 3 \text{ or} \\ \text{if } j \equiv 0 \mod 2 \text{ so } i \equiv 0 \mod 3 \\ 2; & \text{if } j \equiv 0 \mod 2 \text{ so } i \neq 0 \mod 3 \text{ or} \\ \text{if } j \equiv 1 \mod 2 \text{ so } i \equiv 0 \mod 3 \end{cases}$$

From coloring function c_1 we can see that $P_{total} \in C_{total} = C_{tota$

 $\begin{array}{l} \chi_r''(P_n \trianglerighteq C_m) \geq 2\Delta, \mbox{ suppose } \chi_r''(P_n \trianglerighteq C_m) < 2\Delta \mbox{ let } \\ \chi_r''(P_n \trianglerighteq C_m) = 2\Delta - 1 \mbox{ then function of total coloring } \\ \mbox{ is } c_1. \mbox{ Let vertex which has degree 2 is denoted by } x_1 \\ \mbox{ in illustration } c_1 \mbox{ above, we can see that } |C(N(x_1)| = 3 \\ \mbox{ and } \min\{r, d(x_1) + |N(x_1)|\} = \min\{4, 4\} = 4 \mbox{ then } \\ 3 \neq 4 \mbox{ it's contradiction. So that } \chi_r''(P_n \trianglerighteq C_m) \geq 2\Delta. \\ \mbox{ Furthermore, it will be showed that } \chi_r''(P_n \trianglerighteq C_m) \leq 2\Delta \\ \mbox{ by coloring } (P_n \trianglerighteq C_m) \mbox{ by using function } c_2. \mbox{ Suppose } \\ D = \{1, 2, \cdots, k\} \mbox{ is the set of } k\mbox{-coloring and } c_2 \mbox{ is the which mapping the vertex and edge to } D \mbox{ then } c_2 = \\ V(P_n \trianglerighteq C_m) \bigcup (P_n \trianglerighteq C_m) \rightarrow \{1, 2, \cdots, k\} \mbox{ for } n \geq 3, \\ m \geq 3 \mbox{ and } \Delta = 4 \mbox{ the function as following:} \end{array}$

$$\begin{split} c_2(x_1,x_2,x_3,x_4,x_5,\ldots) &= (1,3,5,2,4,\ldots);\\ c_2(x_1x_2,x_2x_3,x_3x_4,x_4x_5,x_5x_6,\ldots) &= (2,4,1,3,5,\ldots);\\ c_2(x_{1,1}x_{1,2},x_{1,2}x_{1,3},x_{1,3}x_{1,4},\ldots) &= (6,7,8,\ldots). \end{split}$$

From coloring function c_2 we can see that total chromatic number of r-dynamic is $\chi''_r(P_n \ge C_m) \le 2\Delta$, because $\chi''_r(P_n \ge C_m) \le 2\Delta$ and $\chi''_r(P_n \ge C_m) \ge 2\Delta$, then $\chi''_r(P_n \ge C_m) = 2\Delta$. So $\chi''(P_n \ge C_m)_r = 2\Delta$; $\delta + 2 \le r \le 2\Delta - 1$.

Case 3. For $\chi_r''(P_n \supseteq C_m) = 2\Delta + 1$ it will be showed that $\chi_r''(P_n \supseteq C_m) \ge 2\Delta + 1$, suppose $\chi_r''(P_n \supseteq C_m) < 2\Delta + 1$ let $\chi_r''(P_n \supseteq C_m) = 2\Delta$ then function of total coloring is c_2 . Let vertex which has degree 4 denoted by x_2 . In illustration c_2 above, we can see that $|c(N(x_2))| = 7$ and $min\{r, d(x_2) + |N(x_2)|\} = min\{8, 8\} = 8$ then $7 \neq 8$ it's contradiction. So that $\chi_r''(P_n \supseteq C_m) \ge 2\Delta + 1$. Furthermore, it will be showed that $\chi_r''(P_n \supseteq C_m) \le 2\Delta + 1$. Furthermore, it is the set of k-coloring and c_3 is the function which mapping the vertex and edge to D then $c_3 = V(P_n \supseteq C_m) \bigcup (P_n \supseteq C_m) \to \{1, 2, \cdots, k\}$ for $n \ge 3, m \ge 3$ and $\Delta = 4$ the function as following:

$$c_{3}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots) = (1, 3, 5, 2, 4, \ldots);$$

$$c_{3}(x_{1}x_{2}, x_{2}x_{3}, x_{3}x_{4}, x_{4}x_{5}, x_{5}x_{6}, \ldots) = (2, 4, 1, 3, 5, \ldots);$$

$$c_{3}(x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}, \ldots) = (6, 7, 8, 9, \ldots).$$

From coloring function c_3 we can see that total chromatic number of r-dynamic is $\chi_r''(P_n \triangleright C_m) \leq 2\Delta + 1$, because $\chi_r''(P_n \triangleright C_m) \leq 2\Delta + 1$ and $\chi_r''(P_n \triangleright C_m) \geq 2\Delta + 1$, then $\chi_r''(P_n \triangleright C_m) = 2\Delta + 1$. In the exponential graph $(P_n \triangleright C_m)$ the value of $min\{r, max\{d(u) + d(v)\}\} = max\{d(u) + d(v)\} = 2\Delta + 1$ and $min\{r, max\{d(u) + |N(u)|\}\} = max\{d(u) + |N(u)|\} = 2\Delta + 1$ resulting $\chi_{r \geq 2\Delta}''(P_n \triangleright C_m) = 2\Delta + 1$.

Theorem 2. For $n \ge 3$, $m \ge 3$, and $r = 2\Delta$ the total *r*-dynamic chromatic number of edge comb product graph $G = (P_n \ge W_m)$ is:

$$\chi_r''(P_n \succeq W_m) = \begin{cases} \Delta + 1; & \text{for } 1 \le r \le \delta + 1\\ r+1; & \text{for } \delta + 2 \le r \le 2\Delta - 2\\ 2\Delta + 1; & \text{for } r \ge 2\Delta - 1 \end{cases}$$

Proof. An edge comb product of path graph with wheel graph, denoted by $(\mathbf{P_n} \ge \mathbf{W_m}), n \ge 3$ and $m \ge 3$, is a

connected graph with vertex set
$$V(\mathbf{P_n} \ge \mathbf{W_m}) = \{x_i; 1 \le i \le n\} \cup \{A_i; 1 \le i \le n-1\} \cup \{x_{i,j}; i \le i \le n-1; 1 \le j \le m-2\}$$
, and edge set $E(P_n \ge W_m) = \{x_i x_{i+1}; 1 \le i \le n-1\} \cup \{A_i x_i; 1 \le i \le n-1\} \cup \{A_i x_{i+1}; 1 \le i \le n-1\} \cup \{A_i x_{i,j}; 1 \le i \le n-1; 1 \le j \le m-2\} \cup \{x_i x_{i,j}\}; 1 \le i \le n-1; j = 1\} \cup \{x_{i,j} x_{i,j+1}; 1 \le i \le n-1; 1 \le j \le m-2\} \cup \{x_i x_{i,j}\}; 1 \le i \le n-1; j = 1\} \cup \{x_{i,j} x_{i,j+1}; 1 \le i \le n-1; j = m-2\}$. The order and size of $(\mathbf{P_n} \ge \mathbf{W_m}), n \ge 3, m \ge 3$ are $|V(P_n \rhd W_m)| = nm - m + 1, |E(P_n \rhd W_m)| = mm - m + 1$.

 $2(mn-m),\,\delta=3$ and

6;

for $m \leq 6$

 $m; \quad \text{for } m \geq 6$

We have found that some total r-dynamic chromatic number of exponential graph $P_n \ge H$. It is interesting to characterize a property of any graph operation to have an exact value or lower bound of their total r-dynamic chromatic numbers.

Conjecture 1. Let Δ be maximum degree of graph $P_n \geq H$. The upper bound of total *r*-dynamic chromatic number of $P_n \geq H$ is $\chi''(P_n \geq H) \leq 2\Delta + 1$. It is sharp.

Note. Let $v \in V(G)$ with v as maximum degree. According to Kowalik [5] and [6], all of graphs are limited, simple and undirected. If it let G = (V(G), E(G)) is a graph with vertex set (V(G) and edges set E(G). Total coloring of graph G is mapping $c : V(G) \cup E(G) \rightarrow [1, 2, 3, ..., k]$ where [1, 2, 3, ..., k] is a color set that complete this condition:

- 1. $c(u) \neq c(v)$, for every two vertices that adjacent, where $u, v \in V(G)$;
- 2. $c(uv) \neq c(u'v)$, for every two two edges that adjacent, where $uv, u'v\epsilon E(G)$;
- c(v) ≠ c(uv), for every vertex v ∈V(G) and other edges uv ∈E(G) incident in vertex v.

From the statement 1 we found $\chi''_r \ge \Delta + 1$ so that every adjacent vertices must have different colors. From statement 2, we see that every adjacent edges must have different colors to v where v is maximum degree. So that: $\chi''_r \ge \Delta + 1 = \Delta + 1 + \Delta$

$$\chi_r \ge \Delta + 1 = \Delta + 1 + \Delta$$

$$\chi_r'' \ge \Delta + 1 = 2\Delta + 1 \qquad \Box$$

ACKNOWLEDGEMENT

We gratefully acknowledge the support from CGANT - University of Jember of year 2016.

REFERENCES

- [1] D. F. Putri, "Analisa Pewarnaan Total *r*-Dinamis pada Graf Khusus dan Graf Hasil Operasi". Jember: Universitas Jember, 2016.
- [2] F. H. Azizah, "Nilai Kromatik dan Kajian Pewarnaan Total *r*-Dinamis pada Beberapa Graf Khusus", Jember: Universtas Jember, 2016.
- [3] S. W. Saputro, N. Mardiana and I. A. Purwasih, "The metric dimension of comb product graphs", Graph Theory Conference in honor of Egawa's 60th birthday, September 10-14, 2013.
- [4] V. A. Bojarshinov, "Edge and total coloring of interval graphs", Discrete Applied Mathematics, vol. 114, issue 1, pp. 23-28, 2001.

 \square

- [5] L. Kowalik, J. Sereni and R. Skrekocsk, "Total colorings of Plane Graphs with Maximum Degree Nine", Society for Industrial and Applied Mathematcs, 2008.
- [6] A. Kemnitz and M. Marangio, "Total colorings of Cartesian products of graphs." CONGRESSUS NUMERANTIUM, pp. 99-110, 2003.