On The Total r-dynamic Coloring of Edge Comb Product graph $G \unrhd H$

Dwi Agustin Retno Wardani ${ }^{2}$, Dafik ${ }^{1,3}$, Antonius C. Prihandoko ${ }^{1,4}$, Arika I. Kristiana ${ }^{1,3}$

${ }^{1}$ CGANT University of Jember Indonesia
${ }^{2}$ Mathematics Depart. University of Jember Indonesia
${ }^{3}$ Mathematics Edu Depart. University of Jember Indonesia
${ }^{4}$ System Information. Depart. University of Jember Indonesia
e-mail: 2i.agustin@gmail.com

Abstract

Given that two natural numbers r, k. By a proper total k-coloring of a graph G, we mean a map $c: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$, such that any two adjacent vertices and incident edges receive different colors. A total r-dynamic coloring is a proper k-coloring c of G, such that $\forall v \in V(G),|c(N(v))| \geq \min \{r, d(v)+|N(v)|\}$ and $\forall e \in E(G),|c(N(e))| \geq \min \{r, d(v)+d(u)\}$. The total r-dynamic chromatic number, written as $\chi_{r}^{\prime \prime}(G)$, is the minimum k such that G has an r-dynamic total k-coloring. A total r-dynamic coloring is a natural extension of r-dynamic coloring in which we consider more condition of the concept, namely not only assign a color on the vertices as well as on the edges. Consequently, this study will be harder. In this paper, we will initiate to analyze a total r-dynamic of an edge comb product of two graphs, denoted by $H \unrhd K$, where H is path graph and K is any special graph. The result shows that the total r-dynamic chromatic number of $P_{n} \unrhd K$.

Keywords-Total r-dynamic coloring, edge comb product of graphs, Chromatic number.

INTRODUCTION

Let G be a simple, connected and undirected graph. By a proper total k-coloring of a graph G, we mean a map $c: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$, such that any two adjacent vertices and incident edges receive different colors [1]. Azizah et al. in [2] defined a total r-dynamic coloring is a proper k-coloring c of G, such that

1. $\forall v \in V(G),|c(N(v))| \geq \min [r, d(v)+|N(v)|]$ and

$$
\text { 2. } \forall e=u v \in E(G),|c(N(e))| \geq \min [r, d(v)+d(u)]
$$

The total r-dynamic chromatic number, written as $\chi_{r}^{"}(G)$, is the minimum k such that G has an r-dynamic total k-coloring. A total r-dynamic coloring is a natural extension of r-dynamic coloring in which we assign a color on the vertices as well as on the edges. In this paper, we will initiate to analyze a total r-dynamic of an edge comb product of two graphs, denoted by $H \unrhd K$, where H is star graph and K is any special graph.

Saputro et. al firstly introduced a comb product of graph in [3]. Let H and K be two connected graphs. Let o be a vertex of K. The comb product between H and K, denoted by $H \triangleright K$, is a graph obtained by taking one copy of H and $|V(H)|$ copies of K and grafting the i-th copy of K at the vertex o to the i-th vertex of H. By the definition of comb product, we can say that $V(H \triangleright K)=$ $\{(a, v) \mid a \in V(H), v \in V(K)\}$ and $(a, v)(b, w) \in E(H \triangleright$ K) whenever $a=b$ and $v w \in E(K)$, or $a b \in E(H)$ and $v=w=o$.

A natural extension of comb product of graph is an edge comb product of graph. Let H and K be two connected graphs. Let e be an edge of K. The edge comb product between H and K, denoted by $H \unrhd K$, is a graph obtained by taking one copy of H and $|E(H)|$ copies of K and grafting the i-th copy of K at the edge e to the i-th edge of H. By the definition of edge comb product, we can say that $V(G \unrhd H)=\{(a, v) \mid a \in$ $V(G) ; v \in V(H)\} \cup\{(a, v, z) \mid a \in V(G) ; v, z \in V(H)\}$ and if $v=w$ and $z=y, y=w$ then $E(G \unrhd$ $H)=\{(a, v)(b, w, z) \mid a, b \in V(G) ; v, w, z \in V(H)\} \cup$ $\{(b, w, z)(c, w, y) \mid b, c \in V(G) ; z, w, y \in V(H)\} \cup$ $\{(c, w, y)(d, v) \mid c, d \in V(G) ; v, w, y \in V(H)\}$ if $a=b$ then $E(G \unrhd H)=\{(a, v)(b, w) \mid a, b \in V(G) ; v, w \in$ $V(H)\}$ so $p=|V(G \unrhd H)|=q_{1}\left(p_{2}-2\right)+p_{1}$ and $q=|E(G \unrhd H)|=q_{1} q_{2}$.

For $r=1$, it is easy to see that the total 1-dynamic of any connected graph satisfies $\chi^{\prime \prime}(G) \geq \triangle(G)+1$,
where $\triangle(G)$ is the maximum degree of graph G, see [1]. Behzad and Vizing [4] also proved that the total 1-dynamic chromatic number for every graph G satisfies $\triangle(G)+1 \leq$ $\chi^{\prime \prime}(G) \leq \triangle(G)+2$. However, we have not fixed the lower bound of the total r-dynamic of any connected graph. But the following observation holds:

Observation 1. Let $\Delta(G)$ be a maximum degree of a graph G. the total r-dynamic of any connected graph satisfies the following $\chi^{\prime \prime}(G) \leq \chi_{d}^{\prime \prime}(G) \leq \chi_{3}^{\prime \prime}(G) \leq \cdots$ \leq
$\chi_{r}^{\prime \prime}(G)$.

THE RESULTS

We are ready to show our main theorems. There are two theorems found in this study that is exponential graph $P_{n} \unrhd C_{m}$ and $P_{n} \unrhd W_{m}$.

Theorem 1. For $n \geq 3, m \geq 3$, and $r=2 \Delta$ the total r-dynamic chromatic number of edge comb product graph $G=\left(P_{n} \unrhd C_{m}\right)$ is:
$\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)= \begin{cases}\Delta+1 ; & \text { for } 1 \leq r \leq \delta+1 \\ 2 \Delta ; & \text { for } \delta+2 \leq r \leq 2 \Delta-1 \\ 2 \Delta+1 ; & \text { for } r \geq 2 \Delta\end{cases}$
Proof. An edge comb product of path graph with cycle graph, denoted by $\left(\mathbf{P}_{\mathbf{n}} \unrhd \mathbf{C}_{\mathbf{m}}\right), n \geq 3$ and $m \geq 3$, is a connected graph with vertex set $V\left(\mathbf{P}_{\mathbf{n}} \unrhd \mathbf{C}_{\mathbf{m}}\right)=\left\{x_{i} ; 1 \leq\right.$ $i \leq n\} \cup\left\{x_{i, j} ; i \leq i \leq n-1 ; 1 \leq j \leq m-2\right\}$, and edge set $E\left(P_{n} \unrhd C_{m}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i, j}\right\} ; 1 \leq$ $i \leq n-1 ; j=1\} \cup\left\{x_{i, j} x_{i, j+1} ; 1 \leq i \leq n-1 ; 1 \leq j \leq\right.$ $m-3\} \cup\left\{x_{i, j} x_{i+1} ; 1 \leq i \leq n-1 ; j=\bar{m}-2\right\}$. The order and size of $\left(\mathbf{P}_{\mathbf{n}} \unrhd \mathbf{C}_{\mathbf{m}}\right), n \geq 3, m \geq 3$ are $\left|V\left(P_{n} \unrhd C_{m}\right)\right|=$ $n m-m-n+2,\left|E\left(P_{n} \unrhd C_{m}\right)\right|=m n-m, \triangle(G)=4$ and $\delta=2$.
Case 1. For $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=\Delta+1$ it will be showed that $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \geq \Delta+1$, suppose $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)<\Delta+1$ let $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=\Delta$ then there is incident edge which has same color. As illustration see the coloring pattern with $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=\Delta$ we can see the function:

$$
\begin{gathered}
c_{1}\left(x_{i}\right)=i \bmod 3 ; c_{1}\left(x_{i} x_{i+1}\right)=i+2 \bmod 3 \\
c_{1}\left(x_{i} x_{i, 1}\right)=5 ; c_{1}\left(x_{i, m-2} x_{i}\right)=4 \ldots
\end{gathered}
$$

$$
c_{1}\left(x_{i, j}\right)= \begin{cases}3 ; & \text { if } j=1 \text { so } i \equiv 1 \bmod 3 \\ 1 ; & \text { if } j \equiv 1 \bmod 2 \text { and } j \neq 1 \text { so } \\ i \neq 0 \bmod 3 \text { or } \\ \text { if } j \equiv 0 \bmod 2 \text { so } i \equiv 0 \bmod 3 \\ 2 ; & \text { if } j \equiv 0 \bmod 2 \text { so } i \neq 0 \bmod 3 \text { or } \\ \text { if } j \equiv 1 \bmod 2 \text { so } i \equiv 0 \bmod 3\end{cases}
$$

From coloring function c_{1} we can see that P Ptot全

$\operatorname{and}_{r}\left(P_{n}^{\prime \prime} \unrhd C_{m}\right) \geq \Delta+1$, then $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=\Delta+1$, so $\chi^{\prime \prime}\left(S_{n} \unrhd S_{m}\right)_{r}=\Delta+1 ; 1 \leq r \leq \bar{\delta}$.
Case 2. For $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=2 \Delta$ it will be showed that
$\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \geq 2 \Delta$, suppose $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)<2 \Delta$ let $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=2 \Delta-1$ then function of total coloring is c_{1}. Let vertex which has degree 2 is denoted by x_{1} in illustration c_{1} above, we can see that $\mid C\left(N\left(x_{1}\right) \mid=3\right.$ and $\min \left\{r, d\left(x_{1}\right)+\left|N\left(x_{1}\right)\right|\right\}=\min \{4,4\}=4$ then $3 \neq 4$ it's contradiction. So that $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \geq 2 \Delta$. Furthermore, it will be showed that $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \leq 2 \Delta$ by coloring $\left(P_{n} \unrhd C_{m}\right)$ by using function c_{2}. Suppose $D=\{1,2, \cdots, k\}$ is the set of k-coloring and c_{2} is the which mapping the vertex and edge to D then $c_{2}=$ $V\left(P_{n} \unrhd C_{m}\right) \bigcup\left(P_{n} \unrhd C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ for $n \geq 3$, $m \geq 3$ and $\Delta=4$ the function as following:

$$
\begin{gathered}
c_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)=(1,3,5,2,4, \ldots) \\
c_{2}\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{6}, \ldots\right)=(2,4,1,3,5, \ldots) ; \\
c_{2}\left(x_{1,1} x_{1,2}, x_{1,2} x_{1,3}, x_{1,3} x_{1,4}, \ldots\right)=(6,7,8, \ldots)
\end{gathered}
$$

From coloring function c_{2} we can see that total chromatic number of r-dynamic is $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \leq 2 \Delta$, because $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \leq 2 \Delta$ and $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \geq 2 \Delta$, then $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=2 \Delta$. So $\chi^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)_{r}=2 \Delta ; \delta+$ $2 \leq r \leq 2 \Delta-1$.
Case 3. For $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=2 \Delta+1$ it will be showed that $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \geq 2 \Delta+1$, suppose $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)<2 \Delta+1$ let $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=2 \Delta$ then function of total coloring is c_{2}. Let vertex which has degree 4 denoted by x_{2}. In illustration c_{2} above, we can see that $\left|c\left(N\left(x_{2}\right)\right)\right|=7$ and $\min \left\{r, d\left(x_{2}\right)+\left|N\left(x_{2}\right)\right|\right\}=\min \{8,8\}=8$ then $7 \neq 8$ it's contradiction. So that $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \geq 2 \Delta+1$. Furthermore, it will be showed that $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \leq 2 \Delta+1$ by coloring $\left(P_{n} \unrhd C_{m}\right)$ by using function c_{3}. Suppose $D=\{1,2, \cdots, k\}$ is the set of k-coloring and c_{3} is the function which mapping the vertex and edge to D then $c_{3}=V\left(P_{n} \unrhd C_{m}\right) \bigcup\left(P_{n} \unrhd C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ for $n \geq 3, m \geq 3$ and $\Delta=4$ the function as following:

$$
\begin{gathered}
c_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)=(1,3,5,2,4, \ldots) \\
c_{3}\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{6}, \ldots\right)=(2,4,1,3,5, \ldots) \\
c_{3}\left(x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}, \ldots\right)=(6,7,8,9, \ldots)
\end{gathered}
$$

From coloring function c_{3} we can see that total chromatic number of r-dynamic is $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \leq 2 \Delta+1$, because $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right) \leq 2 \Delta+1$ and $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd\right.$ $\left.C_{m}\right) \geq 2 \Delta+1_{r}$ (1FRn叉C $\left.m_{m}\right)=2 \Delta+1$, so $\chi_{r}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=$ $2 \Delta+1$. In the exponential graph $\left(P_{n} \unrhd C_{m}\right)$ the value of $\min \{r, \max \{d(u)+d(v)\}\}=\max \{d(u)+d(v)\}=$ $2 \Delta+1$ and $\min \{r, \max \{d(u)+|N(u)|\}\}=\max \{d(u)+$ $|N(u)|\}=2 \Delta+1$ resulting $\chi_{r \geq 2 \Delta}^{\prime \prime}\left(P_{n} \unrhd C_{m}\right)=2 \Delta+$ 1.

So the Theorem is proved.
Theorem 2. For $n \geq 3, m \geq 3$, and $r=2 \Delta$ the total r-dynamic chromatic number of edge comb product graph $G=\left(P_{n} \unrhd W_{m}\right)$ is:
$\chi_{r}^{\prime \prime}\left(P_{n} \unrhd W_{m}\right)= \begin{cases}\Delta+1 ; & \text { for } 1 \leq r \leq \delta+1 \\ r+1 ; & \text { for } \delta+2 \leq r \leq 2 \Delta-2 \\ 2 \Delta+1 ; & \text { for } r \geq 2 \Delta-1\end{cases}$
Proof. An edge comb product of path graph with wheel graph, denoted by $\left(\mathbf{P}_{\mathbf{n}} \unrhd \mathbf{W}_{\mathbf{m}}\right), n \geq 3$ and $m \geq 3$, is a
connected graph with vertex set $V\left(\mathbf{P}_{\mathbf{n}} \unrhd \mathbf{W}_{\mathbf{m}}\right)=\left\{x_{i} ; 1\right.$

$$
\leq i \leq n\} \cup\left\{A_{i} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i, j} ; i \leq i \leq n-\right.
$$ $1 ; 1 \leq$

$j \leq m-2\}$, and edge set $E\left(P_{n} \unrhd W_{m}\right)=\left\{x_{i} x_{i+1} ; 1\right.$
$\leq i \leq n-1\} \cup\left\{A_{i} x_{i} ; 1 \leq i \leq n-1\right\} \cup\left\{A_{i} x_{i+1}\right.$;

$$
1 \leq
$$

$i \leq n-1\} \cup\left\{A_{i} x_{i, j} ; 1 \leq i \leq n-1 ; 1 \leq j \leq\right.$ $\left.m-2\} \cup\left\{x_{i} x_{i, j}\right\} ; 1 \leq i \leq n-1 ; j=1\right\} \cup\left\{x_{i, j} x_{i, j+1} ; 1 \leq\right.$ $i \leq n-1 ; 1 \leq j \leq m-3\} \cup\left\{x_{i, j} x_{i+1} ; 1 \leq i \leq n-1 ; j=\right.$ $m-2\}$. The order and size of $\left(\mathbf{P}_{\mathbf{n}} \unrhd \mathbf{W}_{\mathbf{m}}\right), n \geq 3, m \geq 3$ are $\left|V\left(P_{n} \unrhd W_{m}\right)\right|=n m-m+1,\left|E\left(P_{n} \unrhd W_{m}\right)\right|=$ $2(m n-m), \delta=3$ and $\quad 6 ; \quad$ for $m \leq 6$
$m ; \quad$ for $m \geq 6$

CONCLUDING REMARKS

We have found that some total r-dynamic chromatic number of exponential graph $P_{n} \unrhd H$. It is interesting to characterize a property of any graph operation to have an exact value or lower bound of their total r-dynamic chromatic numbers.

Conjecture 1. Let Δ be maximum degree of graph $P_{n} \unrhd H$. The upper bound of total r-dynamic chromatic number of $P_{n} \unrhd H$ is $\chi^{\prime \prime}\left(P_{n} \unrhd H\right) \leq 2 \Delta+1$. It is sharp.
Note. Let $v \epsilon V(G)$ with v as maximum degree. According to Kowalik [5] and [6], all of graphs are limited, simple and undirected. If it let $G=(V(G), E(G))$ is a graph with vertex set $(V(G)$ and edges set $E(G)$. Total coloring of graph G is mapping $c: V(G) \cup E(G) \rightarrow$ $[1,2,3 \ldots, k]$ where $[1,2,3, \ldots, k]$ is a color set that complete this condition:

1. $c(u) \neq c(v)$, for every two vertices that adjacent, where $u, v \epsilon V(G)$;
2. $c(u v) \neq c\left(u^{\prime} v\right)$, for every two two edges that adjacent, where $u v, u^{\prime} v \epsilon E(G)$;
3. $c(v) \neq c(u v)$, for every vertex $v \epsilon V(G)$ and other edges $u v \epsilon E(G)$ incident in vertex v.

From the statement 1 we found $\chi_{r}^{\prime \prime} \geq \Delta+1$ so that every adjacent vertices must have different colors. From statement 2 , we see that every adjacent edges must have different colors to v where v is maximum degree. So that:
$\chi_{r}^{\prime \prime} \geq \Delta+1=\Delta+1+\Delta$
$\chi_{r}^{\prime \prime} \geq \Delta+1=2 \Delta+1$

ACKNOWLEDGEMENT

We gratefully acknowledge the support from CGANT - University of Jember of year 2016.

REFERENCES

[1] D. F. Putri, "Analisa Pewarnaan Total r-Dinamis pada Graf Khusus dan Graf Hasil Operasi". Jember: Universitas Jember, 2016.
[2] F. H. Azizah, "Nilai Kromatik dan Kajian Pewarnaan Total r-Dinamis pada Beberapa Graf Khusus", Jember: Universtas Jember, 2016.
[3] S. W. Saputro, N. Mardiana and I. A. Purwasih, "The metric dimension of comb product graphs", Graph Theory Conference in honor of Egawa's 60th birthday, September 10-14, 2013.
[4] V. A. Bojarshinov, "Edge and total coloring of interval graphs", Discrete Applied Mathematics, vol. 114, issue 1, pp. 23-28, 2001.

Proceeding The $1^{\text {st }}$ IBSC: Towards The Extended Use Of Basic Science For Enhancing
Health, Environment, Energy And Biotechnology
[5] L. Kowalik, J. Sereni and R. Skrekocsk, "Total colorings of Plane Graphs with Maximum Degree Nine", Society for Industrial and Applied Mathematcs, 2008.
[6] A. Kemnitz and M. Marangio, '"Total colorings of Cartesian products of graphs." CONGRESSUS NUMERANTIUM, pp. 99-110, 2003.

