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Abstract—Given that two natural numbers r, k. By a proper total k-coloring of a graph G, we mean a map
c : V (G) ∪ E(G) → {1, 2, . . . , k}, such that any two adjacent vertices and incident edges receive different colors. A
total r-dynamic coloring is a proper k-coloring c of G, such that ∀v ∈ V (G), |c(N(v))| ≥ min{r, d(v) + |N(v)|} and
∀e ∈ E(G), |c(N(e))| ≥ min{r, d(v) + d(u)}. The total r-dynamic chromatic number, written as χ”

r(G), is the minimum k such
that G has an r-dynamic total k-coloring. A total r-dynamic coloring is a natural extension of r-dynamic coloring in which we
consider more condition of the concept, namely not only assign a color on the vertices as well as on the edges. Consequently,
this study will be harder. In this paper, we will initiate to analyze a total r-dynamic of an edge comb product of two graphs,
denoted by H D K, where H is path graph and K is any special graph. The result shows that the total r-dynamic chromatic
number of Pn DK.
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INTRODUCTION

Let G be a simple, connected and undirected graph.
By a proper total k-coloring of a graph G, we mean a
map c : V (G) ∪ E(G) → {1, 2, . . . , k}, such that any
two adjacent vertices and incident edges receive different
colors [1]. Azizah et al. in [2] defined a total r-dynamic
coloring is a proper k-coloring c of G, such that

1. ∀v ∈ V (G), |c(N(v))| ≥ min[r, d(v) + |N(v)|] and

2. ∀e = uv ∈ E(G), |c(N(e))| ≥ min[r, d(v) + d(u)]

The total r-dynamic chromatic number, written as
χ”
r(G), is the minimum k such that G has an r-dynamic

total k-coloring. A total r-dynamic coloring is a natural
extension of r-dynamic coloring in whichwe assign a color
on the vertices as well as on the edges. In this paper, we
will initiate to analyze a total r-dynamic of an edge comb
product of two graphs, denoted byHDK, whereH is star
graph andK is any special graph.

Saputro et. al firstly introduced a comb product of
graph in [3]. Let H and K be two connected graphs. Let
o be a vertex of K. The comb product between H and
K, denoted by H ◃K, is a graph obtained by taking one
copy of H and |V (H)| copies of K and grafting the i-th
copy of K at the vertex o to the i-th vertex of H . By the
definition of comb product, we can say that V (H ◃K) =
{(a, v)|a ∈ V (H), v ∈ V (K)} and (a, v)(b, w) ∈ E(H◃
K) whenever a = b and vw ∈ E(K), or ab ∈ E(H) and
v = w = o.

A natural extension of comb product of graph is an
edge comb product of graph. Let H and K be two
connected graphs. Let e be an edge of K. The edge
comb product between H and K, denoted by H D K, is
a graph obtained by taking one copy of H and |E(H)|
copies of K and grafting the i-th copy of K at the edge
e to the i-th edge of H . By the definition of edge comb
product, we can say that V (G D H) = {(a, v)|a ∈
V (G); v ∈ V (H)} ∪ {(a, v, z)|a ∈ V (G); v, z ∈ V (H)}
and if v = w and z = y, y = w then E(G D
H) = {(a, v)(b, w, z)|a, b ∈ V (G); v, w, z ∈ V (H)} ∪
{(b, w, z)(c, w, y)|b, c ∈ V (G); z, w, y ∈ V (H)} ∪
{(c, w, y)(d, v)|c, d ∈ V (G); v, w, y ∈ V (H)} if a = b
then E(G D H) = {(a, v)(b, w)|a, b ∈ V (G); v, w ∈
V (H)} so p = |V (G D H)| = q1(p2 − 2) + p1and
q = |E(GDH)| = q1q2.

For r = 1, it is easy to see that the total 1-dynamic
of any connected graph satisfies χ′′(G) ≥ △(G) + 1,

where △(G) is the maximum degree of graph G, see [1].
Behzad and Vizing [4] also proved that the total 1-dynamic
chromatic number for every graphG satisfies△(G)+1 ≤
χ′′(G) ≤ △(G)+2. However, we have not fixed the lower
bound of the total r-dynamic of any connected graph. But
the following observation holds:

Observation 1. Let ∆(G) be a maximum degree of a
graph G. the total r-dynamic of any connected graph
satisfies the following χ′′(G) ≤ χ′′

d(G) ≤ χ′′
3(G) ≤ · · ·

≤
χ′′
r (G).

THE RESULTS

We are ready to show our main theorems. There are
two theorems found in this study that is exponential graph
PnD Cm and PnD Wm.

Theorem 1. For n ≥ 3, m ≥ 3, and r = 2∆ the total
r-dynamic chromatic number of edge comb product graph
G = (PnD Cm) is:

χ′′
r (PnD Cm) =


∆+ 1; for 1 ≤ r ≤ δ + 1
2∆; for δ + 2 ≤ r ≤ 2∆− 1
2∆ + 1; for r ≥ 2∆

Proof. An edge comb product of path graph with cycle
graph, denoted by (Pn D Cm), n ≥ 3 and m ≥ 3, is a
connected graph with vertex set V (Pn D Cm) = {xi; 1 ≤
i ≤ n}∪{xi,j ; i ≤ i ≤ n−1; 1 ≤ j ≤ m−2}, and edge set
E(Pn DCm) = {xixi+1; 1 ≤ i ≤ n− 1} ∪ {xixi,j}; 1 ≤
i ≤ n− 1; j = 1} ∪ {xi,jxi,j+1; 1 ≤ i ≤ n− 1; 1 ≤ j ≤
m−3}∪{xi,jxi+1; 1 ≤ i ≤ n−1; j = m−2}. The order
and size of (Pn D Cm), n ≥ 3,m ≥ 3 are |V (PnDCm)| =
nm−m− n+ 2, |E(Pn DCm)| = mn−m,△(G) = 4
and δ = 2.
Case 1. For χ′′

r (Pn DCm) = ∆+1 it will be showed that
χ′′
r (PnDCm) ≥ ∆+1, suppose χ′′

r (PnDCm) < ∆+1 let
χ′′
r (Pn D Cm) = ∆ then there is incident edge which has

same color. As illustration see the coloring pattern with
χ′′
r (Pn D Cm) = ∆ we can see the function:

c1(xi) = i mod 3; c1(xixi+1) = i+ 2 mod 3;
c1(xixi,1) = 5; c1(xi,m−2xi) = 4...;
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c1(xi,j) =



3; if j = 1 so i ≡ 1 mod 3
1; if j ≡ 1 mod 2 and j ̸= 1 so

i ̸= 0mod 3 or
if j ≡ 0 mod 2 so i ≡ 0 mod 3

2; if j ≡ 0 mod 2 so i ̸= 0 mod 3 or
if j ≡ 1 mod 2 so i ≡ 0 mod 3

From coloring function c1 we can see that total
chromatic number of r-dynamic coloring is χ′′

r (Pn D
Cm) ≤ ∆ + 1, because χ′′

r (Pn D Cm) ≤ ∆ + 1
and χ′′
r (Pn D Cm) ≥ ∆+ 1, then χ′′

r (Pn D Cm) = ∆+ 1,
so χ′′(Sn D Sm)r = ∆+ 1; 1 ≤ r ≤ δ.
Case 2. For χ′′

r (Pn D Cm) = 2∆ it will be showed that

χ′′
r (Pn D Cm) ≥ 2∆, suppose χ′′

r (Pn D Cm) < 2∆ let
χ′′
r (Pn D Cm) = 2∆ − 1 then function of total coloring

is c1. Let vertex which has degree 2 is denoted by x1

in illustration c1 above, we can see that |C(N(x1)| = 3
and min{r, d(x1) + |N(x1)|} = min{4, 4} = 4 then
3 ̸= 4 it’s contradiction. So that χ′′

r (Pn D Cm) ≥ 2∆.
Furthermore, it will be showed that χ′′

r (Pn D Cm) ≤ 2∆
by coloring (Pn D Cm) by using function c2. Suppose
D = {1, 2, · · · , k} is the set of k-coloring and c2 is
the which mapping the vertex and edge to D then c2 =
V (Pn D Cm)

∪
(Pn D Cm) → {1, 2, · · · , k} for n ≥ 3,

m ≥ 3 and∆ = 4 the function as following:

c2(x1, x2, x3, x4, x5, ...) = (1, 3, 5, 2, 4, ...);
c2(x1x2, x2x3, x3x4, x4x5, x5x6, ...) = (2, 4, 1, 3, 5, ...);

c2(x1,1x1,2, x1,2x1,3, x1,3x1,4, ...) = (6, 7, 8, ...).

From coloring function c2 we can see that total
chromatic number of r-dynamic is χ′′

r (Pn D Cm) ≤ 2∆,
because χ′′

r (Pn D Cm) ≤ 2∆ and χ′′
r (Pn D Cm) ≥ 2∆,

then χ′′
r (Pn D Cm) = 2∆. So χ′′(Pn D Cm)r = 2∆; δ +

2 ≤ r ≤ 2∆− 1.
Case 3. For χ′′

r (PnDCm) = 2∆+1 it will be showed that
χ′′
r (PnDCm) ≥ 2∆+1, suppose χ′′

r (PnDCm) < 2∆+1
let χ′′

r (Pn D Cm) = 2∆ then function of total coloring
is c2. Let vertex which has degree 4 denoted by x2. In
illustration c2 above, we can see that |c(N(x2))| = 7
and min{r, d(x2) + |N(x2)|} = min{8, 8} = 8 then
7 ̸= 8 it’s contradiction. So that χ′′

r (Pn DCm) ≥ 2∆+ 1.
Furthermore, it will be showed thatχ′′

r (PnDCm) ≤ 2∆+1
by coloring (Pn D Cm) by using function c3. Suppose
D = {1, 2, · · · , k} is the set of k-coloring and c3 is the
function which mapping the vertex and edge to D then
c3 = V (Pn D Cm)

∪
(Pn D Cm) → {1, 2, · · · , k} for

n ≥ 3,m ≥ 3 and∆ = 4 the function as following:

c3(x1, x2, x3, x4, x5, ...) = (1, 3, 5, 2, 4, ...);
c3(x1x2, x2x3, x3x4, x4x5, x5x6, ...) = (2, 4, 1, 3, 5, ...);

c3(x1,1, x1,2, x1,3, x1,4, ...) = (6, 7, 8, 9, ...).

From coloring function c3 we can see that total
chromatic number of r-dynamic isχ′′

r (PnDCm) ≤ 2∆+1,
because χ′′

r (Pn D Cm) ≤ 2∆ + 1 and χ′′
r (Pn D

Cm) ≥2∆+1, then χ′′
r (PnDCm) = 2∆+1, so χ′′

r (PnDCm) =
2∆ + 1. In the exponential graph (Pn D Cm) the value
of min{r,max{d(u) + d(v)}} = max{d(u) + d(v)} =
2∆+1 andmin{r,max{d(u)+|N(u)|}} = max{d(u)+
|N(u)|} = 2∆+1 resulting χ′′

r≥2∆(Pn DCm) = 2∆+
1.
So the Theorem is proved. �

Theorem 2. For n ≥ 3, m ≥ 3, and r = 2∆ the total
r-dynamic chromatic number of edge comb product graph
G = (PnDWm) is:

χ′′
r (PnDWm) =


∆+ 1; for 1 ≤ r ≤ δ + 1
r + 1; for δ + 2 ≤ r ≤ 2∆− 2
2∆ + 1; for r ≥ 2∆− 1

Proof. An edge comb product of path graph with wheel
graph, denoted by (Pn DWm), n ≥ 3 and m ≥ 3, is a

connected graph with vertex set V (Pn DWm) = {xi; 1
≤i ≤ n} ∪ {Ai; 1 ≤ i ≤ n− 1} ∪ {xi,j ; i ≤ i ≤ n−

1; 1 ≤
j ≤ m − 2}, and edge set E(Pn DWm) = {xixi+1; 1
≤i ≤ n − 1} ∪ {Aixi; 1 ≤ i ≤ n − 1} ∪ {Aixi+1;

1 ≤
i ≤ n − 1} ∪ {Aixi,j ; 1 ≤ i ≤ n − 1; 1 ≤ j ≤
m−2}∪{xixi,j}; 1 ≤ i ≤ n−1; j = 1}∪{xi,jxi,j+1; 1 ≤
i ≤ n−1; 1 ≤ j ≤ m−3}∪{xi,jxi+1; 1 ≤ i ≤ n−1; j =
m− 2}. The order and size of (Pn DWm), n ≥ 3,m ≥ 3
are |V (Pn D Wm)| = nm − m + 1, |E(Pn D Wm)| =
2(mn −m), δ = 3 and

△(Pn DWm) =

{ 6; for m ≤ 6
m; for m ≥ 6

CONCLUDING REMARKS

We have found that some total r−dynamic chromatic
number of exponential graph Pn D H . It is interesting
to characterize a property of any graph operation to have
an exact value or lower bound of their total r−dynamic
chromatic numbers.

Conjecture 1. Let∆ bemaximum degree of graphPnDH .
The upper bound of total r-dynamic chromatic number of
Pn DH is χ′′(Pn DH) ≤ 2∆ + 1. It is sharp.

Note. Let vϵV (G) with v as maximum degree. According
to Kowalik [5] and [6], all of graphs are limited, simple
and undirected. If it let G = (V (G), E(G)) is a
graph with vertex set (V (G) and edges set E(G). Total
coloring of graph G is mapping c : V (G) ∪ E(G) →
[1, 2, 3..., k]where [1, 2, 3, ..., k] is a color set that complete
this condition:

1. c(u) ̸= c(v), for every two vertices that adjacent,
where u, vϵV (G);

2. c(uv) ̸= c(u′v), for every two two edges that adjacent,
where uv, u′vϵE(G);

3. c(v) ̸= c(uv), for every vertex vϵV (G) and other edges
uvϵE(G) incident in vertex v.

From the statement 1 we found χ′′
r ≥ ∆ + 1 so that

every adjacent vertices must have different colors. From
statement 2, we see that every adjacent edges must have
different colors to v where v is maximum degree. So that:

χ′′
r ≥ ∆+ 1 = ∆+ 1 +∆

χ′′
r ≥ ∆+ 1 = 2∆+ 1 �
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