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Abstract— The Direct scattering problem is composed in a pair of integral equations. The equivalence current density 
and the ratio of dielectric contrast are set as variables by applying volume equivalence principle.  The problem is solved 
using the method of moment (MM). The MM solutions are compared to the exact solutions. The results show that the MM 
solution is accurate. Perfect solution is generated for scattering from a wide range dielectric contrast. But, it is sensitive to 
cell’s size. A good result is provided at comparably small cell’s size.. 
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INTRODUCTION 

Direct scattering problems are essential for 
developing methods in inverse scattering problems as in 
microwave imaging. The accuracy of the direct problems 
directly influences the results of the reconstruction 
image.  

A general scattering problem solved using integral 
equations method gains popularity for the last few 
decades. The magnetic and electric field interior and 
exterior of a cylinder with arbitrary cross-sectional shape 
initially were simulated by Richmond [1]. Harington [2] 
proposed a numerical solution of integral equation using 
the method of moment (MM). The MM quantified 
current distribution in the surface of conducting cylinder.  
The integral solutions can be implemented in surface 
integral and volume integral. 

The application of surface integral usually involve 
scattering from conducting cylinder. Various researches 
have been conducted. The MM has been implemented to 
simulate scattering from various types of PEC problems 
[3][4]. The surface integral can be applied to calculate the 
scattering from conducting object of homogeneous 
scatterer but it is not suitable for inhomogeneous 
penetrable object. Thereto the volume integral is put as 
the topic in this paper. 

A wide area of applications of volume integral 
equation was investigated, which included antenna [5], 
transmission line [6],  flow metering [7], imaging [8][9] 
and scattering [10]. The development of the integral 
equations problems includes the formulation of the 
volume integral [11] and hybrid of surface-volume 
integrals [12]. In the same time the solution of the 
equations is grown. The method of moment (MM) has 
been developed rapidly since the work of Richmond’s 
studies in 1965 [1]. It becomes very popular as a solver 
for integral equations. The MM is a numerical procedure 
to solve a linear operator equation by transforming it to a 
system of simultaneous linear algebraic equation which is 
commonly referred to as matrix equations.  

The volume integral works in the centre of the cells 
across the object of interest (OI) sliced. This is suitable 
for microwave imaging that reconstructs the image of OI
cross section. Some works had been done in this topic.  
Richmond approach was used to develop the forward 
problems [13][14][15][16]. Then it was followed by 
developing several inverse methods base on the defined 
forward problems [8][9][10]. The results show that the 
volume integral can be used in developing microwave 
imaging. It can be used to reconstruct simple object.  
Nevertheless, it is sensitive to a noise and initial guess 
beside gaining big error, thereto, the investigation on the 
forward problems needs to be done. 

The feature of MM has included a frequency domain 
prediction technique and taken to the account the entire 
electromagnetic phenomenon and the polarization effects 
for excite field. The MM, which is based on integral 
equation technique, advances in the accuracy of the 
results as it is essentially exact and provides direct 
numerical solutions. It is also applicable to complex 
inhomogeneous OI. Nevertheless, the MM is classified 
into low frequency methods. It is typically limited to 
problems of small electrical size due to limitations of 

computation time and system memory. Thereto, an 
investigation of MM solution for higher frequency is 
necessary to be done. 

THEORY 
The direct scattering from inhomogeneous problem 

involves the interaction between microwave and 
penetrable object. The interaction can be described in 
term of volume electric field integral equations (VEFIE) 
by applying volumetric equivalence principle. The 
integral enforces the electric field inside the domain 
object as  
۳୧(ݎԦ) ൌ ۳୲(ݎԦ) െ ۳ୱ(ݎԦ), Ԧݎ ∈ ௗܸ                   (1) 

In the case of microwave signal illuminate a material 
that is composed of dielectric material, the electric vector ۴ in VEFIE vanishes as magnetic vector ۯ can be 
canceled out in MFIE case. Thus, the VEFIE can be 
written as    
۳୧(ݎԦ) ൌ (Ԧݎ)۳ + ௝ఎ

௞ ൣ݇ଶۯ(ݎԦ) + .׏൫׏  ൯൧           (2)(Ԧݎ)ۯ
Where   ۯ ൌ ׬ ۸௩(ݎԦ)ݎ)ܩ, ୚′ݏ݀(ᇱݎ     
The equivalent current density J is divined as ۸ ൌ ௥ߝ)଴ߝ݆߱ െ 1)۳ by applying volumetric equivalent 

principle. The dielectric constant ߝ௥ which is formed in 
complex number describes an inhomogeneous object. In 
two dimensional domains, the dielectric is taken to be 
constant [ߝ௥(ݔ,   .in each cell [(ݕ

Assuming that a  TM wave illuminates the 2D object. 
The incident field propagates in z direction (ݖ݅ܧ) and the 
.׏) is not varied that is ܬ (ܬ ൌ 0. The integral equations 
turn into simpler form as the second order deferential can 
be eliminated. Furthermore  a dielectric contrast ratio is 
introduced as 

ߝ߯  ൌ െ1ݎߝ
ݎߝ

            (3) 
The dielectric contrast of the background should be 

eliminated as if the volume equivalence is applied. The 
electric field is zero at the background and the equivalent 
current density will be infinity. For direct problems the 
background cannot be separated from the object as the 
object dielectric, size and position are the unknown 
variables for microwave imaging problems. Thus, the 
contrast ratio is employed to avoid zero division. Then, 
the integral equations can be written as  
௭௦ܧ ൌ െ ௞ఎ

ସ ∬ ,′ݔ)௭ܬ  (4)                 ′ݕ݀′ݔ݀(ݎ݇)଴(ଶ)ܪ(′ݕ
߯ఌ(ݔ, ,ݔ)௭௜ܧ(ݕ (ݕ ൌcଵܬ௭(ݔ, (ݕ െ
cଶ ∑ ൣ߯ఌ೙೘ ∬ ,′ݔ)௭ܬ ଴(ଶ)ܪ(′ݕ ൧୒୬ୀଵ′ݕ݀′ݔ݀(ݎ݇)            (5) 

The constants cଵ and cଶ can be determined 
analytically by multiplying the ratio into integral 
equation. The domain is divided into N number of cells 
equal in volume. Then, the moment of method is applied 
using basis to construct a matrix equations. If the cell size 
is approximated by a circle of the same area with radius 
a, the integral of Hankel's function can be evaluated 
analytically as 
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׬ ׬ ᇱ݀∅ᇱݎᇱ݀ݎ(ߩ݇)଴ଶܪ ൌ௔
௥ᇲୀ଴

ଶగ
∅ᇲୀ଴

ቐ
ଶగ

௞ (ܽ݇)ଵଶܪ(ߩ݇)଴ܬ െ ସ௝
௞మ ߩ)    ൏ ܽ)

ଶగ
௞ ߩ)            (ߩ݇)଴ଶܪ(ܽ݇)ଵܬ ൐ ܽ)          (6) 
 
Then, the matrix form of the integral equations can 

stated in a pair of matrix equations as follows: 
ݏ۳ ൌ െ(7)          ۸݊݉܈ 
૏۳݅ ൌ [૏݊݊܈ െ ۱ ]۸          (8) 
The ݊݉܈ is the linear operator of the object's cells 

with antennas, ݊݊܈ is the operator of the object's cells 
with them self, and ۱۷ is a diagonal matrix constant of n x n in size. The direct problem is done by solving the 
matrix equation (7) and (8) simultaneously.   

METHODS  
Comparative study is used to analyze the accuracy of 

the MM solutions. The MM solutions are compared to 
the exact solutions. A simple cylindrical geometry object 
with real dielectric contrast is used as it is the only 
possible geometry that exact solutions can handle. The 
object of interest (OI) is defined as infinite cylindrical 
object with ܽைூ െradius and real ߝ௥ dielectric. The exact 
solutions calculate the scattering fields in observation 
domain (ܱ) using cylindrical harmonic expansions. The 
MM approaches the cylindrical in squared meshes.  

In 2D view the OI is placed in square area which is 
divided in ஺ܰ small squared area with ܽ௖௘௟௟ െradius 
equivalent. The radius of the cell is varied by changing 
the ஺ܰ. The dielectric of the cells which are placed inside 
OI is set as  ߝ௥ others are set as 1. The number of cells 
inside OI is labeled as ܰ. The size of the cells is equal 
among them. The size must be small compared to the 
wave length. Inside material the wave length is defined 
as ඥ|ߝ௥|ߣைூ ൌ  ଴. Peterson [17] recommends theߣ
minimum number of cells for homogeneous dielectric 
cylindrical cross-section is 100݈݈ܿ݁ߣ/ݏைூଶ . This is 
approximately similar to ൎ   .ைூ-cell radiusߣ0.05

The results of MM solutions and exact solution are 
compared. The exact solutions is analytically derive 
using harmonic expansion as in [18]. An absolute mean 
error is used to measure the quality of MM solutions 
relative to exact solutions. the quality of the solution is 
examined in term of cell size and dielectric contrast 
variations.  

NUMERICAL RESULT 
Fig 1 shows the scattered fields for various cell’s size. 

A 3.0 GHz plane wave illuminates a cylindrical dielectric 
cylinder with diameter of 2/3ߣ଴. The dielectric of the 
cylinder is 4. Three OI models are selected and applied to 
the MM solutions. the models diver is the number of the 
cells. This means that the size of the cells are varied 
among them. The scattered fields in O domain are 
simulated at 64 antennas. It can be seen that 0.08ߣைூ-cell 
radius produce relatively big error. Reasonable good 
result is generated by model with 0.06ߣைூ-cell radius, 
and 0.03ߣைூ-cell radius produce excellent scattered 
fields. it can be seen that the error of the fields are 
dependent on the position of the Rx antennas relative to 
Tx. The longest and shortest distance of Rx and Tx 
produce greater errors compared to other position of Rx 
antennas. 

Fig 2 shows the accuracy of the MM solutions at two 
observation points for various models. The models are 
varied by dividing the background of OI which is 
constant in size of 1/2ߣ଴ in 10 up to 10 000 cells. The 
working frequency is kept constant at 1.5 GHz. The 
bigger the number of cells is the smaller the cell’s size 
compared to ߣ଴. It can be seen that models with radius ൑  ଴ produce a good approximation to exactߣ0.05
solutions. The MM solution approaches the exact 

solution. It can be seen that the error fluctuates and 
increases as the cell’s size is enlarged. The 5% error is 
produced in models at ܽ ൎ  ଴. The size follows theߣ0.05
recommendation. 

 

 Figure 1 – The magnitude (a) and the phase (b) of the scattered 
fields of the MM solutions and exact solution for scattering by 
dielectric cylinder with ߝ௥ ൌ 4 at three different cell size. The antennas are placed at 5 λ0. A plane wave is transmitting from (ߩ ൌ ,଴ߣ5 ߶ ൌ 0) and the scattered fields are receiving at 64 
antennas  (ߩ ൌ ,଴ߣ5 ߶ ൌ 0. .360). 
Decreasing the cell’s size will enlarge the matrix size. 

The computational time improves significantly as the cell 
number reaches 60x60 object divisions. Iteration for 
calculating the Green’s functions between cells and the 
size of full matrix which consist of complex numbers are 
burdening the computation process. A 2G Bytes RAM 
computer can handle only 50x50 OI. A supercomputer is 
needed to handle a bigger number of cells. Improving 
cell size at some point does not improve the quality.  Test 
4 at table 1 which is developed from model at test 3 by 
increasing the cell’s number produce relatively similar 
error. This proceeds to an idea that wise selection of 
cell’s number should be put into account for the design of 
models.   
Table 1 – Scattering obtained from homogeneous dielectric cylinder 
using MM at various cell’s size 
No N a 

Abs (E) Phase (E) 
MM Solution Exact MM Solution Exact 

1 177 0.126 0.191 (16.83%) 
0.229 

2.793 (55.13%) 
1.801 2 316 0.093 0.211 (07.92%) 2.219 (23.23%) 

3 716 0.063 0.231 (00.57%) 1.864 (03.55%) 4 1264 0.046 0.225 (01.83%) 1.868 (03.75%) 
 

 Figure 2 – Comparison of Scattered fields resulted by exact 
solutions and MM solutions at two different points of (ߩ ൌ
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,଴ߣ5+ ߶ ൌ 0) and  (ߩ ൌ ,଴ߣ5+ ߶ ൌ  .for various equivalent diameter of cell (ߨ1/2

 Figure 3 – Comparison of exact solutions and MM solutions of 
scattering field at a single point of ߩ ൌ ,଴ߣ5+ ߶ ൌ 0 for various dielectric contrasts 
The effect of dielectric contract to the accuracy of 

MM solutions is shown in fig 3. The data are taken at a 
single point in +ݔ direction. The OI size is taken to be 
constant at ܽ ൌ  ଴. The object model is divided inߣ0.05

஺ܰ ൌ  to guarantee the cell size meets the 20ݔ20
recommendation size. It can be seen that the absolute of 
the scattering field resulted from of MM solutions is 
close to the exact solutions. The MM is able to handle the 
dielectric variations. It can be used to reconstruct 
scattering field from high contrast dielectric object. In 
average the error is very small.  In several points the 
errors significantly increase. The problem appears in 
place where the shape of the field dramatically changes. 
The complexity and pattern change is hard to solve. This 
can be seen in figure 3 that the MM solution misses the 
red line of exact solutions at the sudden changed points.  

CONCLUSION 
The numerical solution for microwave scattering is 

set as forward problems. The problem is derived to solve 
Maxwell’s equations in frequency domain. The electric 
field integral equation in transverse magnetic polarization 
is selected as the problems. Volume integral equations 
are derived for inhomogeneous cases. The ratio of 
dielectric contrast and equivalent current density are 
selected as variable to be solved. This creates an 
alternative solution for volume integral as the infinite 
solution at the background can be eliminated without 
canceling the background cells. This produces a 
flexibility in developing the inverse problems for 
microwave imaging.  

The solutions are posed in the centre of the cells.  The 
MM is applied to solve the integral equations. Using 
pulse basis function, the integral equation is transferred 
into linear equations in term of matrix equations. The 
matrix equation is derived in two different relations. The 
unknown equivalent current density in each cell is 
calculated using known incident fields and the ratio of 
dielectric contrast. The equivalent principle is applied to 
replace the unknown variable. The unknown scattered 
field is calculated using the equivalent current density. 
The numerical solutions are applied to simple problems. 
The results are compared to exact solutions. The results 
show that the pulse basis function demonstrates the 
ability to expand the current density J. It can be seen that 
the result depends on the cell size. The size of the cells 
should be much smaller than the wave length. The MM 
solutions in J formulations show good accuracy. The MM 
solves VEFIE in a very high range of dielectric contrast.  
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