BEBERAPA SIFAT ALJABAR DAN ARITMATIK PADA NORMA CONE DAN HASIL KALI DALAM CONE

(Some Algebraic and Arithmetic Properties on Cone Norms and Inner Products Cone)

Sadjidon^{1*}), Sunarsini²⁾

1,2)Departemen Matematika, Fakultas Sains dan Analitika Data Institut Teknologi Sepuluh Nopember Surabaya e-mail: djidon77@gmail.com, sunarsini@matematika.its.ac.id *)penulis korespondensi

Abstract. Pada paper ini dipelajari tentang ruang bernorma cone dan ruang hasil kali dalam cone, khususnya pada ruang $(l_2, \|.\|_C)$. Selanjutnya dikonstruksi dan didefinisikan multiplication pada norma cone dan hasil kali dalam cone sehingga diperoleh beberapa sifat aljabar dan aritmatiknya.

Keywords: Ruang bernorma cone, Ruang hasil kali dalam S-cone, sifat aljabar dan aritmatik pada norma cone, hasil kali dalam cone.

1. Pendahuluan

Ruang barisan klasik telah banyak dipelajari lain ruang c, c_0, l_∞, l_p , khususnya untuk ruang- l_2 yang diberikan dengan $l_2 := \{x = (x_k) : \sum_{k=1}^\infty |x_k|^2 < \infty \}$ dan tentang ruang bernormanya dengan norma satandar pada ruang- l_2 yaitu norma $\|x\| = (\sum_{k=1}^\infty |x_k|^2)^{\frac{1}{2}}$. Selanjutnya dijabarkan ruang hasil kali dalam pada l_2 dan sifat-sifat nya yang juga mengaitkan dengan normanya dan juga pada [1] telah dipelajari dan dikaji tentang himpunan cone dan ruang bernoma cone. Selanjutnya pada paper ini adalah mengembangkan dengan penjabaran ruang bernorma dan hasil kali dalam pada ruang- l_2 dan juga pada kajian [1] sehingga diperoleh penjabaran norma Cone dan hasil kali dalam S-cone pada ruang- l_2 serta sifat-sifat aljabar dan aritmatiknya.

Diberikan X adalah ruang vektor atas R atau ruang linier. Norma-B adalah fungsi $\|.\|: X \to R$ yang memenuhi berikut ini:

```
(N1). ||x|| > 0 untuk semua x, y \in X dan ||x|| = 0 \Leftrightarrow x = \theta
```

(N2). $\|\alpha x\| = |\alpha| \|x\|$ untuk semua $1 x, y \in X$ dan $\alpha \in R$

(N3).
$$||x + y|| \le ||x|| + ||y||$$
 untuk semua $x, y, z \in X$

Jika *X* dilengkapi dengan norma-*B* , maka *X* disebut ruang bernorma *B* dan jika *X* ruang bernorma *B* yang lengkap yaitu jika setiap barisan Cauchy di *X* konvergen, maka disebut ruang Banach.

Berikut ini diberikan beberapa contoh:

Contoh 1: Ruang barisan $c_0 := \{x = (x_k) : x_k \to 0\}$ dengan norma $||x|| = |x_k|$ adalah ruang Banach.

Contoh 2: Ruang R^n dengan norma standar $||x|| = \sqrt{(x_1)^2 + (x_2)^2 + \dots + (x_n)^2}$ adalah ruang Banach dan $\{e_1, e_2, \dots, e_n\}$ adalah basis standar untuk R^n .

Selanjutnya akan diberikan tentang himpunan cone sebagai berikut:

Diberikan P adalah subset dari ruang Banach E, maka P disebut cone jika:

- (i) P tertutup, P tidak kosong, dan $P \neq \{\theta\}$
- (ii) Untuk semua $x, y \in P$ dan sebarang a, b bilangan real positip, maka $ax + by \in P$
- (iii) $P \cap (-P) = \{\theta\}.$

Selain itu suatu cone P membentuk urutan parsial \leq yang berkaitan P dengan $x \leq y$ jika dan hanya jika $y - x \in P$ dan x < y diartikan sebagai $x \leq y$ dan $x \neq y$, sementara itu $x \ll y$ artinya $y - x \in int P$ (interior dari P). Selanjutnya selalu dianggap bahwa E adalah ruang Banach dan P adalah cone di E

serta \leq adalah urutan parsial yang berkaitan P.

2. Metodologi

Pada paper ini mempelajari dan membahas ruang bernorma, ruang hasil kali dalam serta himpunan cone. Selanjutnya mendefinisikan serta mengkonstruksi ruang bernorma cone khususnya untuk ruang l_2 , untuk mempelajari dan mendefinisikan ruang hasil hasil kali dalam S-Cone maka telah diberikan pengertian tentang himpunan S-Cone.

Selanjutnya dari norma Cone dan hasil kali dalam S-Cone, dibahas beberapa sifat-sifat aljabar dan aritmatiknya yaitu penjumlahan, perkalian dengan skalar dan multiplication.

3. Hasil dan Pembahasan

Pada bahasan ini disajikan penjabaran tentang ruang cone, ruang hasil kali dalam S-cone serta penjumlahan, perkalian dengan skalar dan multiplicationnya yang diberikan dengan definisi dan teorema-teorema,

3.1 Ruang berorma cone

Definisi 3.1.1[3]. Diberikan E adalah suatu ruang Banach, P adalah cone di E dan X adalah ruang vektor (ruang linier) atas R, maka norma cone pada X adalah fungsi $\|.\|_C$:

 $X \rightarrow (E, P, ||.||)$ yang memenuhi:

i) $||x||_C \ge 0$ untuk semua $x \in X$

- ii) $||x||_C = 0$ jika dan hanya jika x = 0
- iii) $\|\alpha x\|_C = |\alpha| \|x\|_C$ untuk setiap $x \in X$ dan $\alpha \in R$
- iv) $||x + y||_C \le ||x||_C + ||y||_C$ untuk $x, y \in X$

Pasangan $(X, \|.\|_{C})$ disebut ruang norma Cone.

Teorema 3.1.2. Diberikan ruang barisan $l_2 := \{x = (x_k) : \sum_{k=1}^{\infty} |x_k|^2 < \infty\}$ dan

 $\|.\|_{C}: l_{2} \to (R^{n}, P, \|.\|)$ dengan $\|x\|_{C} = \sum_{k=1}^{n} e_{k} \|x\|_{l_{2}}$, maka ruang l_{2} adalah ruang bernorma cone.

Bukti:

Telah diketahui bahwa ruang l_2 dengan norma $||x|| = (\sum_{k=1}^{\infty} |x_k|^2)^{\frac{1}{2}}$ adalah ruang Banach. Akan ditunjukkan bahwa $||.||_C$ adalah suatu norma cone. Untuk setiap $x, y \in l_2$ dan $\alpha \in R$, maka diperoleh

$$\begin{aligned} &(\text{CN1}). \ \|x\|_{C} = \sum_{k=1}^{n} \quad e_{k} \|x\|_{l_{2}} \geqslant \theta \\ &(\text{CN2}). \ \|x\|_{C} = \sum_{k=1}^{n} \quad e_{k} \|x\|_{l_{2}} = \theta \Leftrightarrow \|x\|_{l_{2}} = \theta \Leftrightarrow x = \theta \\ &(\text{CN3}). \ \|\alpha x\|_{C} = \sum_{k=1}^{n} \quad e_{k} \|\alpha x\|_{l_{2}} = |\alpha| \sum_{k=1}^{n} \quad e_{k} \|x\|_{l_{2}} = |\alpha| \|x\|_{C} \\ &(\text{CN4}). \ \|x + y\|_{C} = \sum_{k=1}^{n} \quad e_{k} \|x + y\|_{l_{2}} \leqslant \\ &\left(\sum_{k=1}^{n} \quad e_{k} \left(\|x\|_{l_{2}} + \|y\|_{l_{2}} \right) \right) = \sum_{k=1}^{n} \quad e_{k} \|x\|_{l_{2}} + \sum_{k=1}^{n} \quad e_{k} \|y\|_{l_{2}} \end{aligned}$$

Oleh karena itu ruang l_2 adalah ruang bernorma cone.

Selanjutnya didefinisikan multiplication pada norma cone sebagi berikut : diberikan vektor-vektor x dan y di ruang bernorma cone $(X, \|.\|_C)$, maka dapat didefiniskan multiplication cone nya dengan $\|x\|_C \|y\|_C = \sum_{k=1}^n e_k \|x\| \|y\|$.

3.2 Ruang hasil kali dalam S-cone

Definisi 3.2.1 [2] Diberikan X adalah ruang vektor atas R. Suatu hasil kali dalam pada X adalah suatu fungsi $\langle .,. \rangle: X \times X \to R$ yang memenuhi:

(I.1)
$$\langle x, y \rangle \ge 0$$
 untuk setiap $x, y \in X$;

 $\langle x, x \rangle = 0$ jika dan hanya jika x = 0;

(I.2)
$$\langle x, y \rangle = \langle y, x \rangle$$
;

(I.3) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ untuk setiap $x, y \in X$ dan $\alpha \in R$;

https://magestic.unej.ac.id/

(I.4)
$$\langle x + y, z \rangle \le \langle x, y \rangle + \langle x, z \rangle$$
 untuk setiap $x, y, z \in X$.

Pasangan $(X, \langle ., . \rangle)$ disebut ruang hasil kali dalam.

Ini mudah untuk melihat bahwa ruang R^n dengan norma standar adalah ruang Banach dan jika $P \subset R^n$ untuk R non negatif, maka P adalah cone.

Dan juga mudah untuk dijabarkan bahwa ruang- l_2 dengan $||x|| = \langle x, y \rangle^{\frac{1}{2}}$ sebagai norma standar adalah ruang Banach. Selanjutnya dengan hasil kali dalam

$$\langle x, y \rangle = \sum_j x_j y_j$$
, maka ruang l_2 merupakan ruang hasil kali dalam.

Himpunan $\{e_k\}$ adalah suatu basis standar dengan e_k adalah barisan dengan elemen ke-k berniali satu dan yang lain nol $e_k = (0, ..., 0, 1, 0, ...)$..

Sudah dijabarkan bahwa pada ruang bernorma l_2 , maka suatu fungsi

 $\|.\|_C: l_2 \to (R^n, P, \|.\|)$ yang didefinisikan dengan $\|x\|_C = \sum_{k=1}^n e_k \|x\|_{l_2}$, adalah ruang bernorma cone, sehingga ruang l_2 merupakan ruang bernorma cone.

Jika diberukan P adalah subset ruang Banach E dan P adalah cone, maka didefinisikan himpunan $P = P \cup (-P)$ dan himpunan P ini disebut S-Cone.

Sehingga dari penjabaran ruang hasil kali dalam dan pengertian himpunan S-cone dapat dikonstruksi dan didefinisikan ruang hasil kali dalam S-cone yang diberikan sebagai berikut:

Definisi 3.2.2 Ruang Hasil kali dalam S-cone adalah suatu pasangan terurut $(X, \langle .,. \rangle_C)$ dengan X adalah ruang linear R dan $\langle .,. \rangle_C : X \times X \to (E, P, ||.||)$ adalah fungsi yang memenuhi:

(IC1)
$$\langle x, y \rangle_C \ge \theta$$
, untuk setiap $x, y \in X$; $\langle x, x \rangle_C = \theta$ jika dan hanya jika $x = 0$;

(IC2)
$$\langle x, y \rangle_C = \langle y, x \rangle_C$$
, untuk setiap $x, y \in X$;

(IC3)
$$\langle \alpha x, y \rangle_C = \alpha \langle x, y \rangle_C$$
, untuk setiap $x, y \in X$ dan $\alpha \in R$;

$$(\text{IC4}) \quad \langle x+y,z\rangle_{C} \leq \langle x,z\rangle_{C} + \langle y,z\rangle_{C} \ \ , \ \text{untuk setiap} \ x,y,z \in X;$$

Pasangan $(X, \langle ., . \rangle_C)$ disebut ruang hasil kali dalam S-Cone.

Ini mudah untuk dilihat bahwa ruang- l_2 dengan ruang hasil kali dalam standar merupakan

ruang Banach dan juga merupakan ruang hasil kali dalam S-Cone yang akan diberikan dengan teorema berikut:

Teorema 3.2.3 Diberikan $(l_2,\langle x,y\rangle)$ adalah ruang hasil kali dalam dan jika didefisikan suatu fungsi $\langle .,. \rangle_C$: $l_2 \times l_2 \to (R^n,P,\|.\|)$ dengan $\langle x,y \rangle_C = \sum_{k=1}^n e_k \langle x,y \rangle$, maka $\langle .,. \rangle_C$ adalah hasil kali dalam S-cone pada ruang- l_2 .

Bukti:

- (IC1) Karena $\langle x,y\rangle \geq 0$, maka $\langle x,y\rangle_C = \sum_{k=1}^n e_k \langle x,y\rangle \geq \theta$ untuk setiap $x,y\in X$; Selanjutnya $\langle x,x\rangle_C = \sum_{k=1}^n e_k \langle x,x\rangle = \theta$ jika dan hanya jika $e_k \langle x,x\rangle = 0$ atau Jika dan hanya jika x=0 yang berarti bahwa x=00 jika dan hanya jika x=00.
- (IC2) $\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle = \sum_{k=1}^n e_k \underline{\langle y, x \rangle} = \underline{\langle y, x \rangle_C}$ untuk setiap $x, y \in X$ dan $\alpha \in R$;

Dengan demkian $\langle x, y \rangle_C = \langle y, x \rangle_C$

(IC3) $\langle \alpha x, y \rangle_C = \sum_{k=1}^n e_k \langle \alpha x, y \rangle = \alpha \sum_{k=1}^n e_k \langle x, y \rangle = \alpha \langle x, y \rangle_C$ untuk setiap $x, y \in X$ dan $\alpha \in R$;

(IC4)
$$\langle x+y,z\rangle_C = \sum_{k=1}^n e_k \langle x+y,z\rangle \leq \sum_{k=1}^n e_k \langle x,y\rangle + \sum_{k=1}^n e_k \langle x,z\rangle$$

= $\langle x,z\rangle_C + \langle y,z\rangle_C$ Untuk setiap $x,y,z\in X$.

Pada ruang hasil kali dalam S-cone, dua vektor x dan y adalah orthogonal jika dan hanya jika $\langle x,y\rangle_C=\theta$.

3.3 Beberapa sifat Aljabar dan Aritmatik norma cone dan hasil kali dalam S-cone

Sifat Aljabar dan aritmatika dari norma cone dan hasil kali dalam cone diantaranya penjumlahan, perkalian dengan skalar dan multiplication diberikan sebagi berikut:

Diberikan vektor-vektor x dan y di ruang bernorma cone $(X, \|.\|_C)$, dan $\|x\|_C = \|x\|$, maka multiplication cone nya dengan $\|x\|_C \|x\|_C = \|x\| \|x\|$.

Teorema 3.3.1 Diberikan ruang barisan
$$l_2 := \{x = (x_k) : \sum_{k=1}^{\infty} |x_k|^2 < \infty \}$$
 dan $\|.\|_C : l_2 \to (R^n, P, \|.\|)$ dengan $\|x\|_C = \sum_{k=1}^n e_k \|x\|_{l_2}$, maka

- i) Penjumlahan: $||x||_C + ||y||_C = \sum_{k=1}^n e_k (||x||_{l_2} + ||y||_{l_2}).$
- ii) Perkalian dengan skalar: $\|\alpha x\|_C = |\alpha| \|x\|_C$.
- iii) Pergandaan $||x||_C ||x||_C = \sum_{k=1}^n e_k ||x||_{l_2} ||x||_{l_2}$

Bukti:

i)
$$\|x\|_C + \|y\|_C = \sum_{k=1}^n e_k \|x\|_{l_2} + \sum_{k=1}^n e_k \|y\|_{l_2} = \sum_{k=1}^n e_k (\|x\|_{l_2} + \|y\|_{l_2}).$$

ii)
$$\|\alpha x\|_{\mathcal{C}} = \sum_{k=1}^n e_k \|\alpha x\|_{l_2} = |\alpha| \sum_{k=1}^n e_k \|x\|_{l_2} = |\alpha| \|x\|_{\mathcal{C}}.$$

iii)
$$||x||_C ||x||_C = (||x||_C)^2 = \sum_{k=1}^n e_k (||x||_{l_2})^2 = \sum_{k=1}^n e_k ||x||_{l_2} ||x||_{l_2}.$$

Teorema 3.3.2 Diberikan $(l_2, \langle x, y \rangle)$ adalah ruang hasil kali dalam dan jika didefinisikan suatu fungsi $\langle .,. \rangle_C : l_2 \times l_2 \to (R^n, P, \|.\|)$ dengan

$$\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle$$
, maka

i) Penjumlahan:

$$\langle x, y \rangle_C + \langle x, y \rangle_C = \sum_{k=1}^n e_k (\langle x, y \rangle + \langle x, y \rangle)$$

ii) Perkalian dengan skalar:

$$\langle \alpha x, y \rangle_C = \alpha \langle x, y \rangle_C$$

Bukti:

1) Penjumlahan:

$$\langle x,y\rangle_C + \langle x,y\rangle_C = \sum_{k=1}^n \quad e_k\langle x,y\rangle + \sum_{k=1}^n \quad e_k\langle x,y\rangle = \sum_{k=1}^n \quad e_k(\langle x,y\rangle + \langle x,y\rangle).$$

ii) Perkalian dengan skalar:

$$\begin{split} \left\langle \alpha x,y\right\rangle _{C}&=\sum_{k=1}^{n}\quad e_{k}\langle \alpha x,y\rangle =\sum_{k=1}^{n}\quad e_{k}\alpha \langle x,y\rangle =\alpha\sum_{k=1}^{n}\quad e_{k}\langle x,y\rangle =\alpha\langle x,y\rangle$$

Selanjutnya diberikan penjabaran sifat-sifat berikut:

Pada ruang hasil kali dalam S-cone telah dijabarkan bahwa $\langle x, x \rangle_C = ||x||_C ||x||_C$,

dan pada hasil kali dalam telah menjabarkan dengan mendefinisikan bahwa $\langle x, x \rangle = \|x\| \|x\|$ dan juga $\langle x, y \rangle \le \langle x, x \rangle \langle y, y \rangle$ sehingga diperoleh penjabaran untuk hasil kali dalam S-cone yang diberikan sebagai berikut:

$$\begin{aligned} \langle x, y \rangle_C &= \sum_{k=1}^n \quad e_k \langle x, y \rangle \leqslant \sum_{k=1}^n \quad e_k \langle x, x \rangle \langle y, y \rangle = \sum_{k=1}^n \quad e_k (\|x\|^2 \|y\|^2) \\ &= \sum_{k=1}^n \quad e_k \langle x, x \rangle \langle y, y \rangle. \end{aligned}$$

Dengan kata lain diperoleh bahwa $\langle x,y\rangle_C \leqslant \sum_{k=1}^n e_k \langle x,x\rangle \langle y,y\rangle$.

4. Kesimpulan

Norma Cone dan hasil kali dalam S-cone diperoleh penjabaran tentang pendefinisikan penjumlahan, perkalian dengan skalar dan multiplication nya. Dan hasil kajian ini bisa dilanjutkan lebih detail tentang sifat-sifat dan keterkaitan antara norma cone dan hasil kali dalam S-cone nya.

Daftar Pustaka

- [1] Gordji, M.E., Rameszani, M., Khoadei, H., Baghani, H, (2012), Cone Normed Spaces, *Caspian Journal of Mathematical Sciences*, **1**, 7-12.
- [2] Sadjidon, Gunawan, (2007), Konstruksi Ruang 2-Norm Sebagai Luasan yang Direntang oleh Dua Vektor, *Limits: Journal of mathematics and its applications*, **4(2)**, 45-51.
- [3] Sadjidon, Yunus M, Sunarsisi, (2014), 2-Norma Cone pada ruang l_2 , Simposium Nasional Analisis Matematika dan Aplikasinya 2014, ITB Bandung.
- [4] Sadjidon, Yunus M, Sunarsisi, (2015), Construction of Some Orthogonalities in Cone 2-Normed Space, *ICOMPAC*, Matematika FMIPA-ITS.