SIMULASI PENGARUH STEAM-TO-CARBON RATIO DAN TUBE OUTLET TEMPERATURE TERHADAP REAKSI STEAM REFORMING PADA PRIMARY REFORMER DI PABRIK AMONIAK

Muhammad Natsir Hakiki¹, Muslikhin Hidayat², Sutijan²

¹Mahasiswa S2 Pascasarjana Teknik Kimia Fakultas Teknik Universitas Gadjah Mada ²Staf Pengajar Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta, 55281

Email: mnh101@gmail.com, mhidayat@ugm.ac.id

ABSTRACT

Steam reforming, the reaction in Ammonia plant between natural gas and H_2O becoming H_2 and CO/CO₂, is occurred in Primary Reformer and being completed in Secondary Reformer. In Primary Reformer, the reaction commonly occurred at 450-800°C and 36 bars. The endothermic reaction occurred in Ni-based catalyst inside the tube. The heat for this reaction came from the heat of reaction of combustion in the furnace (outer-tube). The flow of H_2 will increase along with the increasing flow of the feed gas and the heat transferred from outer-tube to inner-tube. In the other side, there will be energy increasing. So there's a need of optimization. The need of energy influenced by many parameters e.g. Steam-to-Carbon Ratio (S/C) and Tube Outlet Temperature (T_{out}) of Primary Reformer. Commonly S/C is 3.20 and maximum T_{out} is 800°C. That's why; optimization was conducted by energy calculation at various S/C and T_{out} . Firstly, reaction and heat transfer in innertube and outer-tube were modeled, so we can get the data of temperature and gas composition outlet inner-tube. Then, energy consumption which came from process gas, fuel gas and steam generation was calculated. The range of S/C 2.70-3.70 and T_{out} 700°C-800°C were chosen for the simulation. The simulation result shown that the need of energy per kmol- H_2 outlet Primary Reformer at S/C 3.20 and Tout 800°C was 573.11 MJ/kmol-H2. The need of energy per kmol-H2 outlet Primary Reformer at S/C 3.50 and T_{out} 780°C (20°C below common T_{out}) was 573.01 MJ/kmol-H₂. It means that decreasing T_{out} (for tube lifetime increasing) must be compensated with increasing S/C.

Keywords: Primary Reformer, Steam to Carbon Ratio, Tube Outlet Temperature

PENDAHULUAN

Pabrik Amoniak merupakan industri yang mengolah bahan baku berupa gas alam, air dan udara menjadi produk utama berupa NH₃ dan produk samping berupa gas CO₂. Proses pembentukan NH₃ terjadi menurut mekanisme reaksi sebagai berikut:

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $\Delta H^{0}_{298K} = -45,8 \text{kJ/mol} \dots (1)$

Di *ammonia converter*, reaksi (1) terjadi secara eksothermis dan umumnya berlangsung pada temperatur 300-500°C dan tekanan 60-180 bar dengan rasio mol H₂/N₂ pada kisaran 2,50-3,50. Gas N₂ berasal dari udara, sementara gas H₂ berasal dari reaksi *steam reforming* gas alam yang terjadi di *primary* dan *secondary reformer*.

Di *primary reformer*, reaksi *steam reforming* berlangsung secara endothermis dalam *tube* berkatalis Ni pada temperatur 450-800°C dan tekanan 36 bar. Reaksi *steam reforming* yang melibatkan CH₄ (Xu and Froment, 1989) terjadi menurut mekanisme sebagai berikut:

$$CH_4 + H_2 0 \rightleftharpoons CO + 3H_2$$

$$\Delta H^{0}_{298K} = 206,11 \text{ kJ/mol} \dots (2)$$

 $CO + H_2O \rightleftharpoons CO_2 + H_2$

$$\Delta H^{0}_{298K} = -41,17 \text{ kJ/mol} \dots (3)$$

$$CH_4 + 2H_20 \rightleftharpoons CO_2 + 4H_2$$

 $\Delta H^{0}_{298K} = 164,94 \text{ kJ/mol} \dots (4)$

Reaksi *steam reforming* yang melibatkan C_2H_6 (Huang dan Reimert, 2012), C_3H_8 (Uskov et.al., 2017) dan C_4H_{10} (Seong et.al., 2013) terjadi menurut mekanisme sebagai berikut:

 $C_2H_6 + 2H_2O \rightleftharpoons 2CO + 5H_2$

$$\Delta H^{0}_{298 \text{ K}} = 348 \text{ kJ/mol} \dots (5)$$

$$C_3H_8 + 6H_20 \rightleftharpoons 3CO_2 + 10H_2$$

$$\Delta H^{0}_{298 \text{ K}} = 354,95 \text{ kJ/mol} \dots (6)$$

$$C_4 H_{10} + 4H_2 O \rightleftharpoons 4CO + 9H_2$$

$$\Delta H^{0}_{298 \text{ K}} = 609,72 \text{ kJ/mol} \dots (7)$$

Secara teoritis, reaksi *steam reforming* akan bergeser ke arah kanan jika dilakukan penambahan jumlah reaktan sehingga jumlah produk H₂ yang dihasilkan bertambah. Sifat endothermis reaksi juga menyebabkan terjadinya penambahan jumlah produk H_2 jika temperatur reaksi dinaikkan. Namun demikian, penambahan jumlah reaktan sebanding dengan peningkatan jumlah energi yang dibutuhkan supaya reaksi bisa berlangsung secara optimal. Di sisi lain, kenaikan temperatur reaksi di *inner-tube* berarti peningkatan jumlah gas bahan bakar yang direaksikan di *outer-tube*. Dengan demikian, perlu dilakukan optimasi konsumsi energi tiap satuan produksi.

Konsumsi energi di *primary reformer* dipengaruhi oleh berbagai parameter. Diantaranya konsentrasi CO₂ dalam gas alam umpan, kandungan hidrokarbon berat (*Heavy Hidrocarbon*) dan Sulfur dalam gas alam umpan, *Steam-to-Carbon Ratio*, *Tube inlet Temperature* dan *Tube Outlet Temperature*. Konsentrasi CO₂ dan kandungan HHC dapat diminimalkan dengan mengoperasikan CO₂ *removal* dan HHC *removal*. Kandungan Sulfur dapat dihilangkan dengan mengoperasikan *Sulfur removal*.

Parameter yang divariasikan pada perhitungan konsumsi energi adalah *Steam-to-Carbon Ratio* (batasan S/C umumnya sebesar 3,20) dan *Tube Outlet Temperature* (batasan T_{out} maksimum 800°C). Simulasi perhitungan konsumsi energi dilakukan pada berbagai nilai S/C dan T_{out}, sehingga didapat nilai konsumsi energi optimal.

METODOLOGI PENELITIAN

Simulasi diawali dengan memodelkan reaksi dan transfer panas di *inner-tube* dan *outer-tube*. Reaksi di *inner-tube* melibatkan CH₄, C₂H₆, C₃H₈ dan C₄H₁₀ melalui mekanisme yang berbedabeda. Xu dan Froment (1989) mengemukakan persamaan terkait CH₄ sebagai berikut:

$$CH_4 + H_2 0 \rightleftharpoons CO + 3H_2$$

$$\Delta H^{0}_{298K} = 206,11 \text{ kJ/mol} \dots (8)$$

$$r_1 = \frac{\frac{k_1}{p_{H_2}^{2,5}} \left(p_{CH_4, p_{H_2O}} - \frac{p_{H_2}^{3, p_{CO}}}{K_1} \right)}{(DEN)^2} \dots (9)$$

$$CO + H_2 O \rightleftharpoons CO_2 + H_2$$

$$\Delta H^{2}_{298K} = -41, 17 \text{ KJ/mol} \dots (10)$$
$$\frac{k_2}{n_U} \left(p_{CO,PH_2O} - \frac{p_{H_2} \cdot p_{CO_2}}{K_2} \right)$$

$$r_2 = \frac{p_{H_2}(V + V_2 + K_2)}{(DEN)^2} \dots (11)$$

$$CH_4 + 2H_2O \rightleftharpoons CO_2 + 4H_2$$

 $\Delta H^{0}_{298K} = 164,94 \text{ kJ/mol} \dots (12)$

$$r_3 = \frac{\frac{k_3}{p_{H_2}^{3,5}} \left(p_{CH_4, p_{H_2}o^2 - \frac{p_{H_2}^{4, p_{CO}}}{K_3} \right)}{(DEN)^2} \dots (13)$$

$$DEN = 1 + K_{CO} \cdot p_{CO} + K_{H_2} \cdot p_{H_2} + K_{CH_4} \cdot p_{CH_4} + \left(\frac{\kappa_{H_2O} \cdot p_{H_2O}}{p_{H_2}}\right) \dots (14)$$

Huang dan Reimert (2012) mengemukakan persaman terkait C_2H_6 sebagai berikut:

$$C_2H_6 + 2H_2O \rightleftharpoons 2CO + 5H_2$$

 $\Delta H_{298 \text{ K}}^0 = 348 \text{ kJ/mol} \dots (15)$

$$r_4 = k_4 \cdot p_{C_2 H_6}^{1,58} \dots (16)$$

Uskov et.al. (2017) mengemukakan persamaan terkait C₃H₈ sebagai berikut: $C_3H_8 + 6H_2O \rightleftharpoons 3CO_2 + 10H_2$

$$\Delta H^{0}_{298 \text{ K}} = 354.95 \text{ kJ/mol} \dots ($$

$$\Delta H^{0}_{298 \text{ K}} = 354,95 \text{ kJ/mol} \dots (17)$$

$$r_5 = \frac{n_{5} c_3 n_8}{\rho_B R.10^3 . T} \qquad \dots (18)$$

Seong et.al. (2013) mengemukakan persamaan terkait C₄H₁₀ sebagai berikut: $C_4H_{10} + 4H_2O \rightleftharpoons 4CO + 9H_2$

$$L_4H_{10} + 4H_20 \rightleftharpoons 400 + 9H_2$$

$$\Delta H^{0}_{298 \text{ K}} = 609,72 \text{ kJ/mol} \dots (19)$$

$$r_6 = k_6 \cdot P_{C_4H_{10}}^{1,01} \cdot P_{H_2O}^{-0,09} \dots (20)$$

Berdasarkan penyusunan neraca massa di sisi *inner-tube*, didapat perubahan masing-masing komponen (F_i) sebagai berikut:

$$\frac{dF_{CH_4}}{dz} = -(r_1 + r_3).A.\rho_B \dots (21)$$
$$\frac{dF_{C_2H_6}}{dz} = -(r_4).A.\rho_B \dots (22)$$

$$\frac{dF_{C_3H_8}}{dz} = -(r_5).A.\rho_B \dots (23)$$

$$\frac{dF_{C_4H_{10}}}{dz} = -(r_6).A.\rho_B...(24)$$
$$\frac{dF_{C0}}{dz} = -(-r_1 + r_2 - 2.r_4 - 2.r_4)$$

$$4.r_6$$
). $A.\rho_B$... (25)

$$\frac{dF_{CO_2}}{dz} = -(-r_2 - r_3 - 3.r_5).A.\rho_B$$

$$\frac{dF_{H_2O}}{dz} = -(r_1 + r_2 + 2.r_3 + 2.r_4 + 2.r_4)$$

$$6.r_5 + 6.r_6).A.\rho_B...(27)$$

$$\frac{dF_{H_2}}{dz} = -(-3.r_1 - r_2 - 4.r_3 - 5.r_4 - 10.r_5 - 9.r_6).A.\rho_B \dots (28)$$

Berdasarkan penyusunan neraca panas di sisi *inner-tube*, didapat perubahan temperatur gas proses (T) sebagai fungsi panjang *tube* (z) sebagai berikut:

$$\frac{dT}{dz} = \frac{U_c \cdot \pi \cdot D_o \cdot (T_f - T) - \sum (r_j \cdot \Delta H_{fj} \cdot A \cdot \rho_B)}{\sum F_i \cdot C_{pi}} \qquad \dots (29)$$

Reaksi pembakaran gas alam berlangsung cepat, sehingga diasumsikan bahwa gas bahan bakar masuk ke sisi *furnace* (*outer-tube*) dalam kondisi *pre-combustion* (Tamzysi, 2017). Reaksi pembakaran terjadi antara CH₄, C₂H₆, C₃H₈, C₄H₁₀ dan H₂ dengan O₂ menghasilkan CO/CO₂ dan H₂O.

Berdasarkan penyusunan neraca panas di sisi *outer-tube*, didapat perubahan temperatur gas bahan bakar (T_f) sebagai fungsi panjang *tube* (z) sebagai berikut:

$$\frac{dT_f}{dz} = \frac{(-n_t.U_c.\pi.D_0.(T_f-T) - \frac{U_A.(T_f-T)}{L_t})}{\sum F_{fi}.C_{pi}} \quad \dots (30)$$

Energi yang diperlukan untuk proses *steam reforming* terdiri dari energi yang terkandung dalam gas proses (NG1) dan gas bahan bakar (NG2), serta energi pembangkitan steam untuk bahan baku (NG3). Metode perhitungan konsumsi energi tiap satuan produksi (NG) dalam simulasi ini adalah sebagai berikut:

$$NG1 = \sum \frac{F_{i} \Delta H_{ci}}{3600.10^3} \qquad \dots (31)$$

$$NG2 = \sum \frac{F_{fi}.C_{pfi}.(T_f - T_{ref})}{10^3} \qquad \dots (32)$$

$$NG3 = \sum \frac{F_{fsi}.\Delta H_{ci}}{3600.10^3} \cdot \frac{F_{SR}}{F_{ST}} \qquad \dots (33)$$

$$NG = \frac{NG1 + NG2 + NG3}{F_{H_2}} \qquad \dots (34)$$

Batasan S/C umumnya sebesar 3,20 sehingga dipilih kisaran S/C 2,70-3,70. Batasan T_{out} maksimum sebesar 800°C sehingga dipilih kisaran T_{out} 700-800°C. Nilai minimal T_{out} dibatasi karena reaksi bersifat *endothermis*, sehingga nilai T_{out} yang terlalu rendah berakibat rendahnya jumlah produk H₂. Nilai maksimal T_{out} dibatasi karena nilainya sebanding dengan nilai temperatur dinding *tube* (*tube wall temperature*). Kenaikan *tube wall temperature* sebesar 20°C dapat menurunkan umur pemakaian *tube* (*tube lifetime*) hingga setengahnya (Farnell, 2003).

Data gas inlet *primary reformer* yang dipakai sebagai basis simulasi, data *tube* dan *burner* tersaji pada Tabel 1, 2 dan 3.

Tabel 1. Data inlet Primary Reformer pada S/C 3,20

Ν	Demometer	Cathon	Data					
0	Parameter	Satuan	Proses	Fuel				
1	Tekanan	Bar	36,44	2,76				
2	Temperatu	°C	451	1796,3				
	r			7				
3	Komposisi							
	CH ₄	Kmol/jam	1076,1	-				
	C ₂ H ₆	Kmol/jam	75,6	-				
	C ₃ H ₈	Kmol/jam	47,21	-				
	n-C4H10	Kmol/jam	14,89	-				
	O ₂	Kmol/jam	-	238,03				
	CO	Kmol/ja	-	7,22				
		m						
	CO ₂	Kmol/jam	3,63	832,96				
	H ₂ O	Kmol/jam	4571,2	1432,5				
			3	1				
	H ₂	Kmol/jam	50,59	2,61				
	N_2	Kmol/jam	17,6	6770,0				
				4				
	Ar	Kmol/jam	0,21	66,31				

Tabel 2. Data tube di Primary Reformer

No	Parameter	Satuan	Data
1	Jumlah <i>row</i>	-	9
2	Jumlah <i>tube/row</i>	-	42
3	Panjang <i>tube</i> berisi katalis	Mm	10200
4	Diameter inner-tube	Mm	89,5
5	Diameter outer-tube	Mm	116
6	Jarak antar <i>tube</i>	Mm	552,5
7	Jarak antar row	Mm	1676

Tabel 3. Data burner di Primary Reformer

No	Parameter	Satuan	Data
1	Jumlah <i>row</i>	-	10
2	Jumlah <i>burner/row</i>	-	20
3	Panjang <i>furnace</i>	Mm	16252
4	Lebar furnace	Mm	13030

Model proses yang terjadi di *inner-tube* dan *outer-tube* tersaji di Gambar 1. Susunan *tube* dan *burner* tersaji pada Gambar 2.

Gambar 1. Model Proses di inner dan outer-tube

000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		Burner
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000	000000000000000000000000000000000000000	000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

Gambar 2. Susunan Tube, Burner dan Riser di Primary Reformer

HASIL DAN PEMBAHASAN

Simulasi reaksi dan transfer panas di sisi *inner-tube* dan *outer-tube* menghasilkan profil temperatur gas proses (T) dan gas bahan bakar (T_f) sebagai fungsi panjang *tube* (z). Profil yang menampilkan temperatur dalam satuan °C dan panjang *tube* dalam satuan fraksi (0=inlet dan 1=outlet) tersaji pada Gambar 3 sebagai berikut:

Gambar 3. Profil Temperatur Gas Proses dan Fuel Gas sebagai fungsi Posisi

Jumlah mol masing-masing komponen dalam gas proses di sisi *inner-tube* (Fi) mengalami perubahan sebagai fungsi panjang *tube* (z). Profil yang menampilkan komposisi dalam satuan kmol/jam dan panjang *tube* dalam satuan fraksi (0=inlet dan 1=outlet) tersaji pada Gambar 4 dan 5.

Gambar 4. Profil Komposisi Gas Proses sebagai fungsi Posisi (A)

Gambar 5. Profil Komposisi Gas Proses sebagai fungsi Posisi (B)

Berdasarkan Gambar 4, $flow C_3H_8$ dan C_4H_{10} cenderung habis sebelum mencapai 10% bagian awal *tube*. Flow C_2H_6 juga menurun secara bertahap hingga benar-benar bereaksi sempurna pada posisi 80% panjang *tube*. Reaksi C_3H_8 dan C_4H_{10} dengan H_2O menjadi CO/CO₂ dan H_2 mengganggu kesetimbangan reaksi *steam methane reforming* (SMR). Gangguan ini menyebabkan reaksi SMR sempat bergeser ke arah kiri sehingga terjadi kenaikan sesaat flow CH₄ pada posisi 2-4% awal *tube* (Gambar 5). Di sisi lain, terlihat penurunan sesaat temperatur gas proses pada posisi *tube* yang sama (Gambar 3).

Konsumsi energi tiap satuan produksi sebagai fungsi T_{out} dihitung pada berbagai nilai S/C. Hasil perhitungan konsumsi energi dalam satuan MJ/kmol-H₂ dan menampilkan nilai temperatur dalam satuan °C tersaji pada Gambar 6 dan 7 sebagai berikut:

Gambar 6. Konsumsi energi per kmol-H₂ sebagai fungsi Tout pada berbagai nilai S/C

Gambar 7. Konsumsi energi per kmol-H₂ sebagai fungsi S/C pada berbagai nilai T_{out}

Pada Gambar 6 terlihat bahwa konsumsi energi per kmol- H_2 menurun seiring dengan peningkatan T_{out} . Di sisi lain, kenaikan rasio S/C pada gas proses inlet *primary reformer* dapat menurunkan konsumsi energi tiap satuan produksi.

Pada Gambar 7 terlihat bahwa konsumsi energi per kmol-H₂ menurun seiring dengan peningkatan rasio S/C pada gas proses inlet *primary reformer*. Di sisi lain, kenaikan T_{out} dapat menurunkan konsumsi energi tiap satuan produksi. Jumlah kmol-H₂ dan konsumsi energi per kmol-H₂ pada berbagai nilai S/C dan T_{out} tersaji pada Gambar 8 dan 9 sebagai berikut:

Gambar 8. Jumlah kmol-H2 sebagai fungsi Tout dan S/C

Gambar 9. Konsumsi energi per kmol-H₂ sebagai fungsi T_{out} dan S/C

Gambar 8 menunjukkan bahwa kenaikan S/C dan T_{out} berbanding lurus dengan kenaikan *flow* H₂ *outlet Primary Reformer*. Gambar 9 menunjukkan bahwa kenaikan S/C dan T_{out} dapat menurunkan konsumsi energi per kmol-H₂. Konsumsi energi per satuan produk H₂ pada S/C 3,20 dan T_{out} 800°C adalah sebesar 573,11 MJ/kmol-H₂. Simulasi pada T_{out} 780°C (atau 20°C di bawah batasan temperatur) dan S/C 3,50 menghasilkan konsumsi energi sebesar 573,01 MJ/kmol-H₂. Dengan demikian, penurunan T_{out} yang dilakukan untuk menjaga *lifetime tube* perlu dikompensasi dengan kenaikan S/C.

KESIMPULAN

Berdasarkan hasil simulasi, dapat disimpulkan bahwa flow C₃H₈ dan C₄H₁₀ menurun drastis pada 2-4% bagian awal tube, dan cenderung habis bereaksi sebelum mencapai 10% bagian awal tube. Reaksi C3H8 dan C4H10 dengan H2O menjadi CO/CO_2 dan H_2 menggeser kesetimbangan reaksi steam methane reforming (SMR) ke arah kiri. Hal ini menyebabkan kenaikan sesaat flow CH₄ pada posisi 2-4% awal tube. Untuk optimasi konsumsi energi, diperlukan tambahan 0,3 mol steam per mol C gas umpan pada saat menurunkan Tube Outlet Temperature sebesar 20°C.

SARAN

Pada penelitian ini diambil asumsi bahwa aliran gas proses di sisi inner-tube berlangsung secara *plugflow*, sehingga tidak ada distribusi konsentrasi maupun temperatur ke arah radial. Di sisi lain, diasumsikan bahwa temperatur dan konsentrasi gas proses di dalam katalis sama dengan temperatur dan konsentrasi di luar katalis pada posisi/panjang tube yang sama, sehingga ada distribusi konsentrasi tidak maupun temperatur di berbagai posisi dalam katalis (intraparticle gradient). Agar simulasi pada penelitian selanjutnya hasilnya lebih baik, maka disarankan agar radial distribution konsentrasi dan temperatur di inner tube dan di intraparticle gradient tidak diabaikan.

DAFTAR PUSTAKA

- Farnell, P.W., 2003, Modern Techniques for Optimization of Primary Reformer Operation, Synetix, Cleveland;
- Huang, X., and Reimert, R., 2012, Kinetics of Steam Reforming of Ethane on Ni/YSZ (Yttria-stabilized Zyrconia) Catalyst, Fuel, 106, 380-387;
- [3] Seong, M., et.al., 2014, Reactor Sizing for Butane Steam Reforming over Ni and Ru Catalyst, Korean J. Chem. Eng., 31 (3), 412-418;
- [4] Tamzysi, C., 2017, Evaluasi Overheat pada Tube Katalis Primary Reformer PT Pupuk Kujang Cikampek dengan Metode Simulasi Computational Fluid Dynamics (CFD), Yogyakarta, Universitas Gadjah Mada;
- [5] Uskov, S.I., et.al., 2017, Kinetics of Low-Temperature Steam Reforming of Propane in a Methane Excess on a Ni-Based Catalyst, Catalysis in Industry, 9 (2), 104-109;
- [6] Xu, J., & Froment, G. F., 1989, Methane Steam Reforming, Methanation and Water-Gas Shift: Intrinsic Kinetics, AIChE Journal, 35 (1), 88-96.

DAFTAR LAMBANG

A = Luas area, m²

- $C_{pi} = \text{Kapasitas panas i, J/mol/K}$
- D_0 = Diameter luar *tube*, m
- F_i = Flow gas i di *inner-tube*, kmol/s
- F_{fi} = Flow gas i di *outer-tube*, kmol/s
- F_{fsi} = Flow gas i untuk pembangkitan *steam*, kmol/s
- F_{SR} = Flow steam ke Primary Reformer, Ton/jam
- F_{ST} = Flow steam outlet 101-F, (248,5) Ton/jam
- k_n = Konstanta kecepatan reaksi n
- K_i = Konstanta kesetimbangan i
- L_t = Panjang *tube*, m
- [1] $n_t = Jumlah tube$
- p_i = Tekanan parsial i, N/m²
- r_i = Kecepatan reaksi j, kmol/kg-cat/s
- T = Temperatur gas *inner-tube*, K

- T_f = Temperatur gas *outer-tube*, K
- T_{ref} = Temperatur gas outer-tube, K T_{ref} = Temperatur reference, 298 K U_c = Koefisien perpindahan panas overall, kW/m²/K U_A = koefisien heat loss overall, kW/K z = Satuan panjang tube, m ΔH^0_{298K} = Entalpi pembentukan pada 298 K, kJ/mol

- $\begin{array}{l} \Delta H_{fj} = \text{Entalpi pembentukan j, kJ/mol} \\ \Delta H_{ci} = \text{Entalpi pembakaran i, kJ/mol} \\ \text{[2]} \quad \rho_{B} = \textit{Bulk density katalis, (863,4) Kg-cat/m^{3}} \end{array}$