ANALISIS NILAI EKIVALENSI MOBIL PENUMPANG (EMP) DENGAN METODE *TIME HEADWAY* (STUDI KASUS JALAN IMAM BONJOL)

Ketut Bagus Aris Sanjaya

Mahasiswa Jurusan Teknik Sipil Politeknik Negeri Bali Jalan Kampus Bukit Jimbaran, Kuta Selatan, Kabupaten Badung-Bali arissanjaya194@gmail.com

I Gede Made Oka Aryawan¹

Dosen Jurusan Teknik Sipil Politeknik Negeri Bali Jalan Kampus Bukit Jimbaran, Kuta Selatan, Kabupaten Badung-Bali okaaryawan@pnb.ac.id

Gede Yasada, ST.,M.Si

Dosen Jurusan Teknik Sipil Politeknik Negeri Bali Jalan Kampus Bukit Jimbaran, Kuta Selatan, Kabupaten Badung-Bali gedeyasada@yahoo.com

Abstract

Road performance requires the latest information about the traffic conditions and characteristics of a road. For this reason, research on the value of emp was carried out to obtain road performance results in accordance with traffic characteristics on Jalan Imam Bonjol 2/1 UD. The value of emp is calculated by the time headway method by calculating the time between vehicles passing by when crossing the headway limit. The emp value obtained is then used in calculating the performance of the road segment. From the calculation results, the left lane emp value for MC is 0.28 and HV is 1.37. And the right lane emp MC 0.34 and HV 1.29. Then do the calculation of the performance analysis of the road using the emp value from the calculation of the morning flow DS 0.49 and afternoon flow DS 0.59. The difference in the value of emp is due to changes in conditions in the field. The DS value suggested by MKJI 1997 is (DS < 0.75), indicating that the Imam Bonjol road segment is still quite feasible to serve traffic during rush hour traffic.

Keywords: emp, Time Headway, Degree of Saturation, MKJI, Road Performance

Abstrak

Kinerja jalan memerlukan informasi terbaru mengenai kondisi dan karakteristik lalu lintas suatu jalan. Untuk itu dilakukan penelitian nilai emp untuk mendapatkan hasil Kinerja jalan yang sesuai dengan karakteristik lalu lintas di jalan Imam Bonjol 2/1 UD. Nilai emp dihitung dengan metode *time headway* dengan perhitungan waktu antara kendaraan beriringan saat melewati batas headway. Nilai emp yang di dapat kemudian digunakan dalam perhitungan kinerja ruas jalan. Dari hasil perhitungan didapat nilai emp lajur kiri untuk MC 0,28 dan HV 1,37. Dan lajur kanan emp MC 0,34 dan HV 1,29. Kemudian dilakukan perhitungan analisis kinerja ruas jalan menggunakan nilai emp hasil perhitungan arus pagi DS 0,49 dan arus sore DS 0,59. Perbedaan nilai emp akibat perubahan kondisi di lapangan. Nilai DS yang disarankan oleh MKJI 1997 adalah (DS < 0,75), menunjukkan bahwa ruas jalan Imam Bonjol masih cukup layak melayani arus lalu lintas pada jam sibuk lalu lintas.

Kata Kunci: emp, Time Headway, Derajat Kejenuhan, MKJI, Kinerja Jalan

PENDAHULUAN

Begitu pesatnya perkembangan angkutan jalan khususnya di daerah perkotaan yang diakibatkan oleh perkembangan teknologi, peningkatan jumlah penduduk Indonesia yang cukup besar di setiap tahun, mengakibatkan peningkatan aktivitas dalam kegiatan pemenuhan kebutuhan hidup. Provinsi Bali merupakan daerah pariwisata terdepan di Indonesia. Perpaduan alam yang indah dengan budaya yang menarik dan khas menjadi

¹ Corresponding Author: okaaryawan@pnb.ac.id

magnet bagi jutaan wisatawan asing dan domestik untuk berkunjung. Penduduk Bali berjumlah 4.317.404 jiwa [1], jumlah kendaraan di Bali adalah 4,4 juta unit [2]. Kota Denpasar ini menjadi pusat kegiatan bisnis, dan menempatkan kota ini sebagai daerah yang memiliki pendapatan per kapita dan pertumbuhan tinggi di provinsi Bali. Jumlah penduduk Kota Denpasar adalah 725.314 jiwa, jumlah kendaraan di Denpasar berjumlah 1,4 juta unit. Semakin berkembangnya sektor-sektor di atas dan meningkatnya jumlah penduduk menyebabkan masalah kompleks pada lalu lintas di Kota Denpasar. Hal ini membuat menurunya kecepatan arus lalu lintas dan menurunnya kinerja jalan tersebut.

Nilai ekivalensi mobil penumpang sendiri besarnya berbeda - beda antara tempat yang satu dan dengan yang lain, hal ini disebabkan oleh sebuah nilai ekivalensi mobil penumpang dipengaruhi oleh beberapa faktor yaitu : karakteristik arus lalu lintas, kendaraan, kondisi geometrik jalan. Karakteristik lalu lintas yang dimaksud adalah tipe jalan yang dilalui oleh kendaraan, terutama pada ruas jalan satu arah yang biasanya memiliki arus lalu lintas yang lebih cepat dan perilaku kendaraan yang cenderung berani memanuver akan berbeda nilai ekivalensi mobil penumpang yang dimiliki oleh jalan tersebut jika dibandingkan dengan ruas jalan dengan dua arah. Oleh karena itu kebijakan yang di ambil untuk mengatasi konflik sesuai dengan kondisi di lapangan diperlukan nilai emp yang sesuai dengan keadaan jalan sebenarnya.

Dengan berbagai masalah transportasi di kota Denpasar tersebut, perlu dilakukan kajian mengenai nilai ekivalensi mobil penumpang. Penting dikaji kembali mengenai nilai empuntuk ruas Jalan Imam Bonjol untuk mendapatkan kinerja yang sesuai dengan karakteristik jalan Imam Bonjol.

HASIL DAN PEMBAHASAN

Perhitungan Nilai emp Kendaraan Dengan Metode Time Headway

emp adalah faktor konversi dari berbagai jenis kendaraan yang diubah menjadi kendaraan ringan. Data yang digunakan untuk menghitung nilai emp diperoleh dari hasil survei dilapangan, yaitu jumlah headway kendaraan (N) dan *headway* rata-rata yang didapat dengan jumlah arus lalu lintas setiap lajur dan lajur gabungan digunakan dalam analisis emp. Data awal yang dicari nilai rata-rata *time headway*, selanjutnya nilai rata-rata *time headway* pasangan kendaraan dikoreksi. Time headway yang terkoreksi inilah yang akan digunakan untuk menghitung emp.

Tabel 1. Analisis *headway* arus lalu lintas untuk Lajur Kiri

NO	Tipe Headway	Jumlah Data Survei (n)	Rata-rata (detik)
1	Light Vehicle diikuti Light Vehicle	69	1,71
2	Light Vehicle diikuti Heavy Vehicle	3	2,09
3	Heavy Vehicle diikuti Light Vehicle	5	2,14
4	Heavy Vehicle diikuti Heavy Vehicle	2	2,17
5	Motor Cycle diikuti Motor Cycle	407	0,50
6	Light Vehicle diikuti Motor Cycle	79	1,29

NO	Tipe Headway	Jumlah Data Survei (n)	Rata-rata (detik)
7	Motor Cycle diikuti Light Vehicle	77	1,36
	Tabel 2. Analisis <i>headway</i> arus lal	lu lintas untuk Lajur Ka	ınan
NO	T' II - d	Jumlah Data	Rata-rata
NO	Tipe Headway	Survei (n)	(detik)
1	Light Vehicle diikuti Light Vehicle	151	1,70
2	Light Vehicle diikuti Heavy Vehicle	8	1,46
3	Heavy Vehicle diikuti Light Vehicle	14	2,62
4	Heavy Vehicle diikuti Heavy Vehicle	11	2,12
5	Motor Cycle diikuti Motor Cycle	115	0,48
6	Light Vehicle diikuti Motor Cycle	147	1,32
7	Motor Cycle diikuti Light Vehicle	126	1,32

Tabel 3. Analisis *headway* arus lalu lintas untuk Gabungan

NO	Tipe Headway	Jumlah Data	Rata-rata
	Tipe Headway	Survei (n)	(detik)
1	Light Vehicle diikuti Light Vehicle	220	1,70
2	Light Vehicle diikuti Heavy Vehicle	11	1,63
3	Heavy Vehicle diikuti Light Vehicle	19	2,49
4	Heavy Vehicle diikuti Heavy Vehicle	13	2,13
5	Motor Cycle diikuti Motor Cycle	552	0,50
6	Light Vehicle diikuti Motor Cycle	226	1,31
7	Motor Cycle diikuti Light Vehicle	203	1,34

Tabel 4. Rekapitulasi nilai emp

		emp Hasil Analisa							
NO	Jenis Kendaraan	Lajur	Lajur	Cohungon	Dep. PU,				
		Kiri Kanan ^{Ga}		Gabungan	(1997)				
1	Kendaraan Ringan (LV)	1,00	1,00	1,00	1,00				
2	Kendaraan Berat (HV)	1,37	1,29	1,31	1,20				
3	Sepeda Motor (MC)	0,28	0,34	0,30	0,25				

Analisis Kinerja Ruas Jalan

Data yang digunakan untuk analisis kinerja ruas jalan adalah hasil pengamatan berupa data geometri dan data arus lalu lintas.

Tabel 5. Data geometrik jalan Imam Bonjol

NO	Data	Keterangan
1	Lebar bahu	0,65 m (kiri) dan 0,58 m (kanan)
2	Lebar jalan	4,35 m (kiri) dan 4,20 m (kanan)
3	Kelas jalan	Jalan kolektor Kelas III
4	Tipe jalan	2/1 UD

Tabel 6. Data lalu lintas kendaraan jalan Imam Bonjol

NO	Waktu	Kendaraan Ringan	Kendaraan Berat	Sepeda Motor
NO	vv aktu	(LV)	(HV)	(MC)
1	06.00 - 06.15	68	10	551
2	06.15 - 06.30	94	5	576
3	06.30 - 06.45	71	8	693
4	06.45 - 07.00	100	18	706
5	07.00 - 07.15	107	13	633
6	07.15 - 07.30	125	15	621
7	07.30 - 07.45	101	16	614
8	07.45 - 08.00	117	11	616
9	15.00 - 15.15	141	20	625
10	15.15 - 15.30	149	19	645
11	15.30 - 15.45	127	19	680
12	15.45 - 16.00	133	16	762
13	16.00 - 16.15	144	11	737
14	16.15 - 16.30	133	11	748
15	16.30 - 16.45	129	13	870
16	16.45 - 17.00	114	12	899

Penentuan jam puncak

Langkah untuk mendapatkan kinerja ruas jalan terlebih dahulu menentukan jam puncak pada masing-masing waktu survey. Penentuan tersebut diambil dari total arus lalu lintas kendaraan pagi ditambahkan lalu lintas kendaraan sore pada masing-masing waktu survey. Perhitungan jam puncak dengan cara satuan mobil penumpang/ jam. Dengan jumlah kendaraan interval waktu 15 menit dijumlahkan menjadi per satu jamnya.

Tabel 7. Rekapitulasi jumlah kendaraan pada masing-masing jam puncak

	Tuo or / Tronaprourasi				LUDI	juman kendaraan pada masing masing jum					puncun														
		Kendaraan ringan (LV)				Ken	Kendaraan Berat (HV) Sepeda Motor (MC)			Jum	Jumlah Kendaraan Jam Puncak														
No	Jam surve y			(ke nd	araan)					(ke ndaraan)				(kendaraan)					(ke nda ra a n)						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	07.00-07.15	44						6						364						4 14					
2	07.15-07.30	51						3						345						399					
3	07.30-07.45	39	189					3	19					401	1521					443	1729				
4	07.45-08.00	55		204				7		21				411		1524				473		1749			
5	08.00-08.15	59			224			8			24			367			1539			434			1787		
6	08.15-08.30	71				241		6				28		360				1494		437				1763	
7	08.30-08.45	56					253	7					26	356					1440	4 19					17 19
8	08.45-09.00	67						5						357						429					

Tabel 8. Rekapitulasi jumlah kendaraan pada masing-masing jam puncak

	Jam puncak		Pagi	So	re
NO	Arah	Kiri	Kanan	Kiri	Kanan
	Jenis kendaraan				
1	Light Vehicle (kendaraan/jam)	224	179	289	231
2	Heavy Vehicle (kendaraan/jam)	24	30	18	29
3	Motor Cycle (kendaraan/jam)	1539	1117	1909	1345

Perhitungan arus lalu lintas

Perhitungan arus menggunakan data volume/jumlah kendaraan yang dikonversikan menjadi satuan mobil penumpang (smp) dengan faktor konversi emp yang diperoleh dari perhitungan sebelumnya.

Tabel 9. Rekapitulasi perhitungan arus lalu lintas dengan emp hasil perhitungan

NO	Jam survey	Kendaraan/jam	Satuan mobil
			penumpang/jam
1	Pagi	3121	1285.28
2	Sore	3821	1573.89

Tabel 10. Rekapitulasi perhitungan arus lalu lintas dengan emp hasil perhitungan

	NO	Jam survey	Kendaraan/jam	Satuan mobil penumpang/jam
_	1	Pagi	3121	1131.8
	2	Sore	3821	1389.9

Perhitungan kapasitas ruas jalan

Perhitungan kapasitas ruas jalan dengan emp hasil perhitungan menggunakan panduan data dari MKJI 1997. Untuk mencari kapasitas kita memerlukan data kapasitas dasar Co dua lajur tak terbagi 2900, data penyesuaian lebar lajur FCw jalan satu arah dengan lebar lajur 4 meter 1,08, data penyesuaian pemisah arah FCsp unyuk jalan satu arah 1,0, data penyesuaian hambatan samping FCsf jalan satu arah dengan lebar bahu jalan 1,0 hambatan samping sedang 0,94, data penyesuaian ukuran kota 0,1-0,5 juta jiwa dengan nilai 0,90. Untuk menghitung kinerja ruas dengan cara hasil perhitungan arus lalu lintas dibagikan dengan hasil dari perhitungan kapasitas.

Tabel 11. Rekapitulasi perhitungan kinerja ruas jalan dengan emp hasil perhitungan

No	Metode	Arus lalu lintas (sa penumpang		Derajat kejenuhan (DS)		
		pagi	sore	pagi	Sore	
1	Time headway	1295.92	1573.89	0,49	0,59	

Tabel 12. Rekapitulasi perhitungan kinerja ruas jalan dengan emp MKJI 1997

No	Metode	Arus lalu lintas (sa penumpang/	Derajad kejenuhan (DS)		
		pagi	sore	pagi	Sore
1	Time headway	1141.4	1389.9	0,43	0,52

Heavy vehicle (HV) memiliki emp yang lebih besar dibandingkan Light vehicle (LV) dan Motorcycle (MC), hal demikian disebabkan oleh kebutuhan ruang gerak kendaraan yang besar sebanding dengan besarnya kendaraan. Makin besar ukurannya maka kecepatan untuk memulai gerakan akan lebih kecil bila dibandingkan dengan Light vehicle (LV) dan Motorcycle (MC). Keadaan ini akan mengakibatkan gangguan terhadap arus lalu lintas secara keseluruhan.

Nilai emp MC dan HV hasil perhitungan dengan metode *time headway* memiliki perbedaan dengan emp di MKJI 1997 (emp HV = 1,2 dan emp MC = 0,25). Hal ini dikarenakan MKJI 1997 telah berumur lebih dari 10 tahun dan telah terjadi perubahan terhadap kondisi lalu lintas pada saat perancangan MKJI 1997 danpada saat sekarang.

Menurut MKJI 1997, cara tercepat menilai hasil penelitian adalah dengan membandingkan derajat kejenuhan (DS) yang diperoleh dengan pertumbuhan lalulintas tahunan dan umur fungsional jalan. DS yang disarankan oleh MKJI 1997 adalah < 0,75. Dari hasil penelitian didapatkan nilai DS sebesar 0,49 dan 0,59. Dengan demikian ruas jalan Imam Bonjol masih cukup layak melayani arus lalu lintas yang melintas pada saat jam sibuk.

KESIMPULAN

Berdasarkan perhitungan yang telah dilakukan pada penelitian ini, maka dapat diambil beberapa kesimpulan sebagai berikut :

- 1. Nilai emp hasil perhitungan menggunakan metode rasio *headway* untuk lajur kiri adalah 0,28 untuk sepeda motor, 1,37 untuk kendaraan berat. Emp untuk lajur kanan adalah 0,34 untuk sepeda motor, 1,29 untuk kendaraan berat. Emp untuk lajur gabungan adalah 0,30 untuk sepeda motor, 1,31 untuk kendaraan berat.
- 2. Hasil analisis kinerja ruas jalan dengan menggunakan emp hasil perhitungan adalah arus pagi 1295.92 smp/jam, arus sore 1573.89 smp/jam, derajat kejenuhan (DS) pagi 0,49, derajat kejenuhan (DS) sore 0,59. Sedangkan kinerja ruas jalan menggunakan emp pada MKJI 1997 menunjukkan arus pagi 1141.4 smp/jam, arus sore 1389.9 smp/jam, derajat kejenuhan (DS) pagi 0,43, derajat kejenuhan (DS) sore 0,52.
- 3. Terdapat perbedaan nilai emp antara hasil perhitungan dengan emp pada MKJI 1997 dimana emp sepeda motor adalah 0,25 dan emp kendaraan besar adalah 1,2. Perbedaan ini terjadi akibat perubahan kondisi di lapangan, seperti peningkatan jumlah kendaraan di jalan dan perubahan keadaan sekitar jalan. Perlu adanya suatu kalibrasi terhadap nilai emp dari hasil perhitungan dan emp pada MKJI 1997.
- 4. Terdapat perbedaan hasil perhitungan kinerja menggunakan emp hasil penelitian dan kinerja menggunakan emp pada MKJI 1997. Kinerja yang diperoleh (DS < 0,75), baik menggunakan emp hasil perhitungan maupun emp pada MKJI 1997, menunjukkan bahwa ruas jalan Imam Bonjol masih cukup layak melayani arus lalu lintas pada jam sibuk lalu lintas.

DAFTAR PUSTAKA

- Andiani, Christy Alty. 2013. Studi Penetapan Nilai Ekuivalensi Mobil Penumpang (EMP) Kendaraan Bermotor Menggunakan Metode Time Headway dan Aplikasinya Untuk Menghitung Kinerja Ruas Jalan (Kasus pada Ruas Jalan Solo-Sragen Km 12). Jurusan Teknik Sipil Fakultas Teknik, Universitas Sebelas Maret Surakarta.
- Badan Pusat Statistik Bali. "Jumlah Kendaraan Provinsi Bali", https://bali.bps.go.id/, di akses pada 10 november 2021.
- Badan Pusat Statistik Bali. "Jumlah Penduduk Provinsi Bali", https://bali.bps.go.id/, di akses pada 10 november 2021.
- Lucia G.J. Lalamentik, Sisca V. Pandey. 2018. *Analisa Nilai Ekivalensi MobilL Penumpang* (emp) Dengan MetodeTime Headway Dan Regresi Linear Berganda (StudiI Kasus: Jalan Raya Termohon). Jurnal Sipil Statik Vol.6 735-742. Universitas Sam Ratulangi Manado.