
Majalah Ilmiah Matematika dan Statistika Volume 16 Nomor 2  2016, 79 – 90  

https://jurnal.unej.ac.id/index.php/MIMS/index  ISSN 1411-6669 

 

79 

 

SEMIPARAMETRIC MODELING  

OF CONSUMER PRICE INDEX 

 

Budi Lestari 

Jurusan Matematika, Fakultas MIPA, Universitas Jember 

 Jl. Kalimantan 37 Jember 68121, Indonesia  

 

 

Abstract. Many classical data, for example, exchange rate, stock price, and 

consumer price index (CPI) data cannot be analyzed under independent observation 

assumption. In addition, some time series data cannot be modeled well into a fully 

linear model, for instance, CPI, price of raw materials for some certain industries and 

price of some industrial products data in which monetary crisis of Indonesia in 1998 

has caused a dramatic effect on the time series of CPI, price of raw materials and 

industrial products. A semiparametric model is a mixture model between parametric 

and nonparametric models. If we apply it to time series data, we will obtain a 

semiparametric time series model known as partly linear autoregressive model: 

ty tpttt yygy   ),...,( 21   for  1 pt . 

Here   is an unknown parameter to be estimated, (.)g is an unknown function in 

1pR , t  are i.i.d. random errors with 0)( 1 E  and )( 2

1E , and t  are 

independent of sy  for all ps ,...,2,1 and 1 pt . Based on the model above, 

we investigate a model for general consumer price index (GCPI) of Jember data 

recorded monthly from January 1998 to December 2002 by Statistic Center Bureau 

of Jember.   

Keywords: Least Square Estimator, Kernel Estimator, Semiparametric Model, 

Consumer Price Index  
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1. Introduction 

In last twenty years, many authors have shown interest in semiparametric regression 

models, especially, partly linear regression models, jjjj tgxy   )(  for ,...2,1j ; 

e.g. Ansley and Wecker (1983), Heckman (1986), Rice (1986), Chen (1988), Chen and 

Shiau (1991), and Andrews (1991) investigated asymptotic behaviors by using spline 

smoothing techniques and Robinson (1988), Speackman (1988), Gao (1992), and Gao, et 

al (1994) also obtained some asymptotic results by using kernel or nearest neighbor 

smoothing under the case where the ),( jj tx are i.i.d. random variables or fixed design 

points, and Wahba (1990), Budiantara (1999) and Hardle (2000) studied partly linear 

model for independent observations case. However, many classical data, for example, 

exchange rate data, stock price data, and consumer price index data, cannot be analyzed 

under independent observation assumption. In addition, some time series data cannot be 
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modeled as a fully linear model, for instance, consumer price index (CPI) data recorded 

monthly from January 1998 to December 2002 by Statistic Center Bureau of Jember in 

which monetary crisis of Indonesia in 1998 has caused a dramatic effect on the time series 

of CPI. Lestari (2001), Lestari (2003), Lestari (2004), and Lestari (2005) studied 

estimation, asymptotic normality and iterated logarithm distribution of partly linear 

autoregressive estimators; and applied partly linear autoregressive model to the consumer 

price index of Jember data. Beside that, latest development in the semiparametric 

regression has given a strong foundation to semiparametric time series analysis. 

The important thing is how we analyze and apply semiparametric regression model to 

time series data. The resulting model is known as partly linear autoregressive model given 

by : 

                            ty tpttt yygy   ),....,( 21 ,  1 pt                                      (1) 

where   is an unknown parameter to be estimated, (.)g is an unknown function in 1pR , 

t  are i.i.d. random errors with 0)( 1 E  and )( 2

1E , and t  are independent of sy  

for all ps ,...,2,1 . 

In this paper, we investigate a semiparametric time series model for the general consumer 

price index (GCPI) of Jember data which is known as partly linear autoregressive model. 

 

2. Methodology 

The model (1) contains unknown parameter   and unknown function (.)g  to be 

estimated.  Least square method is used to obtain estimator T̂  of  . The estimate of 

(.)g  can be obtained by using kernel estimator approach. In association with the GCPI 

data, of course, Firstly we identify the parametric and nonparametric components of data. 

Secondly, we determine an optimum bandwidth for kernel estimator approach with 

generalized cross validation (GCV) criterion and Gaussian kernel function. Finally, we 

estimate the model of GCPI by investigating and comparing their mean square errors 

(MSE), errors and plot for three models approach, i.e., linear autoregressive model, 

ARIMA model, and partly linear autoregressive model. For estimating and plotting, we 

use MINITAB, S-PLUS, and MATLAB programs. 
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3. Results  

3. 1.  Estimation of Function (.)g  and Parameter   

Assume that  Tpptyt ,....,2,1,   satisfy the partly linear autoregressive model : 

                          tptttt yygyy    ,....,21 , t  p+1.                                              (2)                                                 

Then,  we have : 

    pttttptt yyyyEyyg   ,...,,..., 212   

  =    ptttpttt yyyEyyyE   ,...,,..., 212    

  =    pttptt yygyyg   ,....,,...., 2221    (say)                              (3) 

Hence, the natural estimates of  .1g ,  .2g  and  .g  of (3) can be obtained by using kernel 

estimator approach defined by :  

    st

T

ps

TstT yxWxg 



1

1
ˆ ,                                                                          (4) 

    1

1

2
ˆ





 st

T

ps

TstT yxWxg ,                                                                       (5) 

and 

     tTtTtT xgxgxg 21
ˆˆˆ                                                                      (6) 

where ),...,( 2 pttt yyx   and (.)tsW are kernel weight function Nadaraya-Watson given 

by : 

     



T

pt

tsTs hxxKhxxKxW
1

)()(                                              (7)  

where RRK p 1:  is a function and  pThh T  ;  is a sequence of nonnegative real 

numbers.  

Now, based on the model   tpttTtt yygyy    ,....,ˆ
21 , Tpt ,...,1 , we have the 

least square estimator T̂ of  : 
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T
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21221

),...,(ˆ

),...,(ˆ),...,(ˆ

̂                                 (8)       

3.2. Investigation of GCPI Model. 

Based on the model (1), we investigate a model for general consumer price index (GCPI)  

data recorded monthly from January 1998 to December 2002 by Statistic Center Bureau 

of Jember. The GCPI data and their series plot are shown in Table 1 and Figure 1, 
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respectively. 

       Table 1.  General consumer price index  from january 1998 to december 2001 

Year GCPI Year GCPI Year GCPI Year GCPI Year GCPI 

1998 183.69 

185.86 

186.65 

192.55 

195.14 

194.77 

193.35 

192.75 

193.1 

189.92 

188.1 

186.69 

1999 187.8 

188.01 

190.45 

193.1 

194.25 

192.35 

193.5 

195.2 

196.37 

195.88 

198.22 

196.41 

2000 196.99 

197.12 

197.23 

197.29 

197.37 

197.4 

197.5 

197.73 

197.76 

197.84 

197.9 

197.95 

2001 198 

199.87 

197.28 

199.67 

198.83 

199.54 

199.79 

199.92 

200.21 

218.09 

219.28 

220 

2002 218.92 

217.1 

210.27 

218.07 

219.48 

219.96 

218.88 

216.89 

210.09 

216.25 

215.59 

219.06 

    Source : Statistic Center Bureau of Jember 

 

3.2.1. Autoregressive Model Approach 

In this approach, we consider a linear model as follows : 

  tptpttt yyyy    ...22110 .                                          (9) 

The linear regression analysis result on the data gives an estimated model :  

21 036.0923.081.8ˆ
  ttt yyy                                                           (10) 

Validation result of 0̂ , 1̂  and 2̂  shows that 1̂  is significant, and 0̂  and 2̂  are not 

significant. Plot between ty  and tŷ  is shown in Figure 2. 

 

 

 

 

 

 

   Figure 1.  Series Plot of GCPI Data                       Figure 2.  Plot Between ty (  ) and 

                                                                 21 036.0923.081.8ˆ
  ttt yyy  ( --- )   

 

In addition, plotting of residuals as shown model (10) shows that there are a right skew, 

outliers and indicates no normal distribution. Next, by getting out variables with no 

significant coefficients from the model, we obtain : 

ttt yy  100287.1                                                                         (11) 
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Plotting of residuals model (11) shows that there are a right skew, outliers and indicates 

no normal distribution. Plot between ty  and 100287.1ˆ
 tt yy  is shown in Figure 3. 

Residuals plots for models (10) and (11) are shown in Figure 4 and Figure 5, respectively. 

 

 

 

 

 

 

 

 

Figure 3. Plot between ty and 100287.1ˆ
 tt yy   Figure 4.  Residuals plot for Model (10) 

3.2.2. ARIMA Model Approach 

Figure 1 shows a series with trend. It means that the series has not been stationary yet. 

Next, by using difference 1d , i.e., 1 ttt yyw , we have series plot of tw  as shown 

in Figure 6. Figure 6 shows that data has been stationary. Based on the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plots in which they cut off 

after lag 5 and lag 6, we have the estimated model of ARIMA(1,1,0)(1,0,0)6 

 

 

 

 

 

 

 

 

  Figure 5.  Residuals plot for model (11)           Figure 6. Series plot with difference 1d         

Although diagnostic checking result shows that residuals has been white noise but  

estimation of parameters result shows that SAR parameter is significant different from 

zero and AR parameter is not significant. Plot of residuals normality shows that residuals 

are not normal and have outliers as shown in Figure 7.  

3.2.3. Semiparametric Model Approach 

By plotting between ty  and 1ty ; and between ty  and 2ty  we knew that plotting result 

between ty  and 1ty  was relatively linear (Figure 8). On the other hand, plotting result 

between ty  and 2ty  was not linear and had no certain pattern (Figure 9). Therefore, 1ty  

and 2ty  were as parametric and nonparametric components, respectively.  
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Figure 7. Residuals plot for ARIMA Model          Figure 8.  Plot  between ty  and 1ty  

 

 

 

 

 

 

 

Figure 9.  Plot  between ty  and 2ty  

It is also supported by linear regression plot results between ty  and 1ty  with 6.902 R

% , and between ty  and 2ty  with 6.782 R % as shown in Figure 10 and Figure 11, 

respectively. 

 

 

 

 

 

Figure 10. Regression plot between ty  and 1ty     Figure 11. Regression plot between  

                                                                                                     ty  and 2ty  

 

After determining both parametric and nonparametric components, we find the optimum 
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Figure 12 show that the optimum bandwidth is 0.017, because GCV minimum, i.e. 

1.8447, is obtained at  bandwidth (h) = 0.017. 

Next, based on that optimum bandwidth we estimated )(ˆ
2tT yg , 

T̂ , tŷ  and t  values 

by using program Matlab. We got 9192.0ˆ T ; and tŷ , )(ˆ
2tT yg  and t  as shown in 

Table 3. It shows that errors are relatively small or leads to zero for every t. So, we 

obtained the mean square error (MSE), i.e., 0.007083. The relationship of tŷ , 1ty  and 

2ty  formed a surface as shown in Figure 13. 

 

 

 

 

 

 

 

 

   

Figure 12. GCV versus bandwidth plot 

 

 

 

 

 

 

 

 

                                                                    

 

 

 

       

    Figure 13. Surface performed by tŷ , 1ty  and 2ty  

Next, based on that optimum bandwidth we estimated )(ˆ
2tT yg , T̂ , tŷ  and t  values 

by using program Matlab. We got 9192.0ˆ T ; and tŷ , )(ˆ
2tT yg  and t  as shown in 

Table 3. It shows that errors are relatively small or leads to zero for every t. So, we 

obtained the mean square error (MSE), i.e., 0.007083. The relationship of tŷ , 1ty  and 

2ty  formed a surface as shown in Figure 13. 
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     Table 2.  Some GCV values for some bandwidths 

Bandwidth GCV Bandwidth GCV 

0.01 5.83 0.017 1.8447 

0.011 4.8474 0.018 1.9758 

0.012 3.9612 0.019 2.3006 

0.013 3.2064 0.02 2.8035 

0.014 2.6038 0.021 3.4589 

0.015 2.1676 0.022 4.2347 

0.016 1.9107 0.023 5.0963 

 

Table 3.  Estimated values of tŷ ,  2
ˆ

tT yg  and t  

No tŷ   2
ˆ

tT yg  t  No tŷ   2
ˆ

tT yg  t  

1 183.685 14.3408 0 31 197.519 16.0686 -0.024 

2 185.855 17.0072 0 32 197.701 16.1586 0.024 

3 186.645 15.8024 0 33 197.755 16.0012 0 

4 192.545 20.9762 0 34 197.832 16.0513 0.0024 

5 194.972 17.9796 0.1632 35 197.897 16.0425 -0.0024 

6 194.765 15.392 0 36 197.945 16.035 0 

7 193.347 14.3142 -0.0021 37 198.018 16.0627 -0.0238 

8 192.745 15.0174 0 38 199.786 17.784 0.079 

9 193.095 15.919 0 39 197.331 13.6103 -0.0563 

10 189.915 12.4172 0 40 199.87 18.5302 -0.2053 

11 188.23 13.6553 -0.1349 41 199.14 15.6035 -0.3156 

12 186.685 13.7834 0 42 199.535 16.7701 0 

13 187.795 16.1895 0 43 199.785 16.3674 0 

14 188.168 15.5424 -0.1632 44 199.915 16.2676 0 

15 190.445 17.6261 0 45 200.205 16.4381 0 

16 193.095 18.0332 0 46 217.879 33.8462 0.2053 

17 194.245 16.7472 0 47 219.274 18.8057 0 

18 192.21 13.6553 0.1349 48 219.919 18.3572 0.0747 

19 193.495 16.6867 0 49 218.914 16.69 0 

20 195.195 17.3295 0 50 217.084 15.8526 0.0102 

21 196.365 16.9369 0 51 210.265 10.7066 -0.0008 

22 195.873 15.3693 0.0021 52 218.064 24.7841 0 

23 198.089 18.0365 0.1252 53 219.474 19.0241 0 

24 196.405 14.2008 0 54 220.029 18.2827 -0.0747 

25 196.985 16.4446 0 55 218.874 16.6868 0 

26 197.24 16.1667 -0.1252 56 216.894 15.6998 -0.0102 

27 197.225 16.0319 0 57 210.083 10.7181 0.0008 

28 197.285 15.9908 0 58 216.244 23.1296 0 

29 197.355 16.0061 0.0096 59 215.584 16.8071 0 

30 197.082 15.6599 0.3122 60 219.054 20.8838 0 
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3.3.   Comparing of Three Models Approach 

Based on the discussion above, we can compare mean square errors (MSE), Errors ( t ) 

and plots for  these three models approach, i.e., autoregressive, ARIMA and 

semiparametric (partly linear autoregressive) models as follows: 

(i). MSE of autoregressive, ARIMA, and semiparametric models are 11, 8.502 and 

0.007083, respectively. We can see that MSE of semiparametric model approach is 

smaller than both autoregressive and ARIMA models approach. 

(ii). Errors ( t ) of  both autoregressive and ARIMA models approach are not normal, but 

errors ( t ) of semiparametric model approach is normal as shown in Figure 14. 

However, these three models approach satisfy white noise condition. 

(iii).Plot between estimated values ( tŷ ) and observation values ( ty ) for autoregressive, 

ARIMA and semiparametric models approach are given by Figure 15, Figure 16, and 

Figure 17, respectively. We can see that plot result of semiparametric model approach 

gives estimated values ( tŷ )  exactly close to observation values ( ty ). It is different 

from both autoregressive and ARIMA models approach. 

 

 

 

 

 

 

 

 

 

Figure 14. Residuals plot for semiparametric Model.            Figure 15. Series plot between 

                                                                                           ty  and tŷ  for autoregressive model  

 

 

 

 

 

 

 

 

 

Figure 16. Series plot between ty  and tŷ           Figure 17.  Series plot between ty  and tŷ  

                  for ARIMA model.                                               for semiparametric model. 
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4. Conclusion  

Based on the discussion above, we known that using of semiparametric model approach 

for estimating a model of general consumer price index of Jember is better than both 

autoregressive and ARIMA models approach. We obtained an estimated model of general 

consumer price index of Jember as a semiparametric time series model which is called as 

partly linear autoregressive model as follows :  

)(ˆ9192.0ˆ
21   tTtt ygyy                                                        (12) 

Where      )(ˆ9192.0)(ˆ)(ˆ
22212   tTtTtT ygygyg ,  

s

T

s

tTstT yyWyg )()(ˆ
3

221 


  , 

 1

3

222 )()(ˆ




  s

T

s

tTstT yyWyg ,  

     








 
T

j

jtsttTs hyyKhyyKyW
3
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2

1
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1
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y
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