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Abstract.  A chromatic polynomial of a graph G is a special function that 

describes the number of ways we can achieve a proper coloring on the vertices of 

G given k colors. In this paper, we determine a chromatic polynomial of a fan 

graph.  
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1. Introduction 

Let G be a simple labelled graph. A proper coloring of a graph G is an assignment of 

colors to each vertex of G such that no edge connects two identically colored vertices. 

The minimum number of colors needed to produce a proper coloring of a graph G is called 

a chromatic number of G and denoted by 𝜒(𝐺) [2]. If 𝜒(𝐺) = 𝑘 means that the vertices 

of a graph G can be colored by k color, but it cannot be color by 𝑘 − 1 color.  

Theorem 1.1 [1]   A graph 𝐺 with orders 𝑛 has chromatic numbers equal to 𝑛 if and only 

if G is a complete graph, namely 𝐺 =  𝐾𝑛.             ■ 

Theorem 1.2 [1]   If 𝐻 is a subgraph of a graph 𝐺, then 𝜒(𝐻) ≤ 𝜒(𝐺).         ■ 

A chromatic polynomial of a graph was first introduced by George David Birkhof in 1912 

and continued by Whitney in 1932. A chromatic polynomial of a graph G, denoted by 

𝑃(𝐺, 𝑘), is a polynomial which encodes the number of distinct ways to color the vertices 

of G with k colors (where colorings are counted as distinct even if they differ only by 

permutation of colors). The chromatic number 𝜒(𝐺) is the least natural number k for 

which such a partition is possible. If  𝑘 < 𝜒(𝐺) then 𝑃(𝐺, 𝑘) = 0. In this paper, we 

examined the chromatic polynomial of a fan graph.  

The chromatic polynomial of some graphs have been obtained. A graph having n vertices 

but 0 edge, 𝑁𝑛, have the chromatic polynomial 𝑃(𝑁𝑛, 𝑘) = 𝑘𝑛, while a complete graph 

on n vertices, Kn, have the chromatic polynomial 𝑃(𝐾𝑛, 𝑘) = 𝑘 (𝑘 − 1)(𝑘 − 2) … (𝑘 −
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𝑛 + 1) . Read [4] proved that the chromatic polynomial of any tree having n vertices, Tn, 

is 𝑃(𝑇𝑛, 𝑘) = 𝑘 (𝑘 − 1)𝑛−1. A color-partition of a graph G = (V,E) is a partition of V into 

disjoint non-empty subsets,     V = V1  V2  · · ·  Vk, such that the color-class Vi is an 

independent set of vertices in G, for each 1 ≤  i ≤ k.  

Theorem 1.3 [3]   Let G be a graph of order n. Then, the chromatic polynomial of a graph 

𝐺 is 𝑃(𝐺, 𝑘) = ∑ 𝛼(𝐺, 𝑖)(𝑘)𝑖
𝑛
𝑖=1  where 𝛼(𝐺, 𝑖) is the number of color-partitions of G into 

i color-classes.                 ■ 

Read [4] gave the properties of the chromatic polynomial of a graph G with n vertices 

and m edges, in the following theorem.  

Theorem 1.4 [4] Let 𝑃(𝐺, 𝑘) =  𝑎𝑛𝑘𝑛 + 𝑎𝑛−1𝑘𝑛−1 + ⋯ + 𝑎1𝑘 + 𝑎0 be a chromatic 

polynomial of a graph 𝐺 with 𝑛 vertices and 𝑚 edges, then the following conditions are 

satisfied. 

a. All the coefficients are integers (could be 0).  

b. The order of the polynomial is 𝑛. 

c. The coefficients of 𝑘𝑛 is 1: 𝑎𝑛 = 1. 

d. The coefficients of 𝑘𝑛−1 is – m: 𝑎𝑛−1 = −𝑚. 

e. The coefficients of 𝑘0 is 0: 𝑎0 = 0.  

f. Signs of coefficients alternate between positive and negative    

g. If 𝑚 ≠ 0, then the sum of the coefficients on 𝑃(𝐺, 𝑘) is 0.                                  ■ 

 

 

2. Main Results 

A fan graph 𝐹𝑛 is a simple graph formed by connecting a single vertex to all vertices of a 

path on n vertices 𝑃𝑛 . So, the fan graph 𝐹𝑛 has 𝑛 + 1 vertices and 2𝑛 − 1 edges. Let 

𝑉(𝐹𝑛) = {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝐹𝑛, where 𝑑𝑒𝑔(𝑣0) =  𝑛, 𝑑𝑒𝑔(𝑣1)  =

 𝑑𝑒𝑔(𝑣𝑛)  =  2 and 𝑑𝑒𝑔(𝑣𝑖) = 3 for 2 ≤ 𝑖 ≤  𝑛 − 1 and 𝐸(𝐹𝑛) = {𝑣0𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪

{𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} be the edge set of 𝐹𝑛. Before we discuss the chromatic 

polynomial of a fan, we give the chromatic number of a fan.   

Lemma 2.1 Let 𝑛 ≥ 3 be an integer. Then, the chromatic number of a fan 𝐹𝑛 is 3, namely 

𝜒(𝐹𝑛) = 3.         

Proof. Since 𝐹𝑛 contain a triangle 𝐾3 as a subgraph, according to Theorem 1.1 and 

Theorem 1.2, then 𝜒(𝐹𝑛) ≥ 3.  Next, we will show that 𝜒(𝐺) ≤ 3 by giving color to fan 

graph. We define a coloring of the vertices of fan graph 𝐹𝑛 as follows. 
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𝑓(𝑣𝑖) = {
1 ; 𝑖 = 0
2 ; 𝑖 odd
3 ; 𝑖 even and 𝑖 ≠ 0 

 

It can be seen easily that each adjacent vertex has a different color. So, 𝜒(𝐺) ≤ 3.                      

■  

 

 

Now, we determine the chromatic polynomial of fan graph 𝐹𝑛 for each integer 𝑛 ≥ 3. We 

consider a fan 𝐹3 as depicted in Figure 1.  

 

Figure 1.  A fan 𝐹3 

 

First, we look for all possible coloring of all vertices of 𝐹3. Since χ(𝐹3) = 3, all possible 

coloring in all vertices of 𝐹3 started with three colors up to the number of vertices, that is 

four colors. Next, we determine the number of color-partitions of a fan 𝐹3. Table 1 shows 

that all possibilities of coloring and partitioning of the vertex set of a fan 𝐹3.  

 

Table 1.  A coloring possibility of  𝐹3 

If 𝑣𝑖 and 𝑣𝑗 have 

the same color 

Another possible 

coloring 
The color-classes 

Number of 

partitions 

𝑣1 = 𝑣3 𝑣0 ≠ 𝑣2 {𝑣1, 𝑣3}, {𝑣2}, {𝑣0} 3 

All distinct 𝑣0 ≠ 𝑣1 ≠ 𝑣2 ≠ 𝑣3 {𝑣0}, {𝑣1}, {𝑣2}, {𝑣3} 4 

 

Based on Table 1, the number of color-partitions of 𝐹3 into i color-classes are 𝛼(𝐹3, 3) =

1 and 𝛼(𝐹3, 4) = 1. Thus, by Theorem 1.3 we obtain 

 

𝑃(𝐹3, 𝑘) = ∑ 𝛼(𝐹3, 𝑖)(𝑘)𝑖

4

𝑖=1

 

    = 0𝑘1 + 0𝑘2 + 𝑘3 + 𝑘4 

   = 𝑘(𝑘 − 1)(𝑘 − 2) + 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3) 

    = 𝑘(𝑘 − 1)(𝑘 − 2)(1 + (𝑘 − 3)) 

    = 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 2) 

    = 𝑘(𝑘 − 1)(𝑘 − 2)2 
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Figure 2.  A fan 𝐹4 

Now, we consider a fan graph F4 as depicted in Figure 2. Table 2 shows that all 

possibilities of coloring and partitioning of the vertex set of a fan 𝐹4. 

Table 2.  A coloring possibility of 𝐹4 

If 𝑣𝑖 and 𝑣𝑗 have 

the same color 
Another possible coloring The color-classes 

Number of 

partitions 

𝑣1 = 𝑣3 𝑣2 = 𝑣4 ≠ 𝑣0 {𝑣1, 𝑣3}, {𝑣2, 𝑣4}, {𝑣0} 3 

𝑣1 = 𝑣3 𝑣2 ≠ 𝑣4 ≠ 𝑣0 {𝑣1, 𝑣3}, {𝑣2}, {𝑣4}, {𝑣0} 4 

𝑣1 = 𝑣4 𝑣2 ≠ 𝑣3 ≠ 𝑣0 {𝑣1, 𝑣4}, {𝑣2}, {𝑣3}, {𝑣0} 4 

𝑣2 = 𝑣4 𝑣1 ≠ 𝑣3 ≠ 𝑣0 {𝑣1, 𝑣4}, {𝑣1}, {𝑣3}, {𝑣0} 4 

All distinct 𝑣0 ≠ 𝑣1 ≠ 𝑣2 ≠ 𝑣3 ≠ 𝑣4 {𝑣0}, {𝑣1}, {𝑣2}, {𝑣3}, {𝑣4} 5 

 

Based on Table 2, the number of color-partitions of 𝐹4 into i color-classes are 𝛼(𝐹4, 3) =

1, 𝛼(𝐹4, 4) = 3 and 𝛼(𝐹4, 5) = 1. So, by Theorem 1.3 we obtain the chromatic 

polynomial of a graph  𝐹4 as follows.  

𝑃(𝐹3, 𝑘) = ∑ 𝛼(𝐹3, 𝑖)(𝑘)𝑖

4

𝑖=1

 

     = 0𝑘1 + 0𝑘2 + 𝑘3 + 3𝑘4 + 𝑘5 

     = 𝑘(𝑘 − 1)(𝑘 − 2) + 3(𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)) + 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)(𝑘 − 4) 

   = 𝑘(𝑘 − 1)(𝑘 − 2)(1 + 3(𝑘 − 3) + (𝑘 − 3)(𝑘 − 4)) 

   = 𝑘(𝑘 − 1)(𝑘 − 2)(1 + 3𝑘 − 9 + 𝑘2 − 7𝑘 + 12) 

   = 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘2 − 4𝑘 + 4) 

   = 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 2)2 

   = 𝑘(𝑘 − 1)(𝑘 − 2)3 

 

 

Figure 3.  A fan 𝐹5 
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Furthermore, we consider a fan graph 𝐹5 as depicted in Figure 3. The coloring of all 

vertices of 𝐹6 starts with 3 colors up to the number of vertices which is 6 colors. Table 3 

shows that all possibilities of coloring and partitioning of the vertex set of a fan 𝐹5. 

 

Table 3.  A coloring possibility of 𝐹5 

If 𝑣𝑖 and 𝑣𝑗 have 

the same color 

Another possible 

coloring 
The color-classes 

Number of 

partitions 

𝑣2 = 𝑣4 𝑣1 = 𝑣3 = 𝑣5 ≠ 𝑣0 {𝑣2, 𝑣4}, {𝑣1, 𝑣3,𝑣5}, {𝑣0} 3 

𝑣1 = 𝑣3 𝑣2 = 𝑣4 ≠ 𝑣5 ≠ 𝑣0 {𝑣1, 𝑣3}, {𝑣2, 𝑣4}, {𝑣5}, {𝑣0} 4 

𝑣1 = 𝑣3 𝑣2 = 𝑣5 ≠ 𝑣4 ≠ 𝑣0 {𝑣1, 𝑣3}, {𝑣2, 𝑣5}, {𝑣4}, {𝑣0} 4 

𝑣1 = 𝑣4 𝑣2 = 𝑣5 ≠ 𝑣3 ≠ 𝑣0 {𝑣1, 𝑣4}, {𝑣2, 𝑣5}, {𝑣3}, {𝑣0} 4 

𝑣1 = 𝑣4 𝑣3 = 𝑣5 ≠ 𝑣2 ≠ 𝑣0 {𝑣1, 𝑣4}, {𝑣3, 𝑣5}, {𝑣2}, {𝑣0} 4 

𝑣1 = 𝑣5 𝑣2 = 𝑣4 ≠ 𝑣3 ≠ 𝑣0 {𝑣1, 𝑣5}, {𝑣2, 𝑣4}, {𝑣3}, {𝑣0} 4 

𝑣2 = 𝑣4 𝑣3 = 𝑣5 ≠ 𝑣1 ≠ 𝑣0 {𝑣2, 𝑣4}, {𝑣3, 𝑣5}, {𝑣1}, {𝑣0} 4 

𝑣1 = 𝑣3 = 𝑣5 𝑣2 ≠ 𝑣4 ≠ 𝑣0 {𝑣1, 𝑣3, 𝑣5}, {𝑣2}, {𝑣4}, {𝑣0} 4 

𝑣1 = 𝑣3 𝑣2 ≠ 𝑣4 ≠ 𝑣5 ≠ 𝑣0 {𝑣1, 𝑣3}, {𝑣2}, {𝑣4}, {𝑣5}, {𝑣0} 5 

𝑣1 = 𝑣4 𝑣2 ≠ 𝑣3 ≠ 𝑣5 ≠ 𝑣0 {𝑣1, 𝑣4}, {𝑣2}, {𝑣3}, {𝑣5}, {𝑣0} 5 

𝑣1 = 𝑣5 𝑣2 ≠ 𝑣3 ≠ 𝑣4 ≠ 𝑣0 {𝑣1, 𝑣5}, {𝑣2}, {𝑣3}, {𝑣4}, {𝑣0} 5 

𝑣2 = 𝑣4 𝑣1 ≠ 𝑣3 ≠ 𝑣5 ≠ 𝑣0 {𝑣2, 𝑣4}, {𝑣1}, {𝑣3}, {𝑣5}, {𝑣0} 5 

𝑣2 = 𝑣5 𝑣1 ≠ 𝑣3 ≠ 𝑣4 ≠ 𝑣0 {𝑣2, 𝑣5}, {𝑣1}, {𝑣3}, {𝑣4}, {𝑣0} 5 

𝑣3 = 𝑣5 𝑣1 ≠ 𝑣2 ≠ 𝑣4 ≠ 𝑣0 {𝑣3, 𝑣5}, {𝑣1}, {𝑣2}, {𝑣4}, {𝑣0} 5 

All distinct 
𝑣0 ≠ 𝑣1 ≠ 𝑣2 ≠ 𝑣3 

≠ 𝑣4 ≠ 𝑣5 
{𝑣0}, {𝑣1}, {𝑣2}, {𝑣3}, {𝑣4} 6 

 

Based on Table 3, the number of color-partitions of 𝐹5 into i color-classes are 𝛼(𝐹5, 3) =

1, 𝛼(𝐹5, 4) = 7, 𝛼(𝐹5, 5) = 6 and 𝛼(𝐹5, 6) = 1. So, by Theorem 1.3 we obtain the 

chromatic polynomial of a graph  𝐹5 as follows.  

𝑃(𝐹5, 𝑘) = ∑ 𝛼(𝐹5, 𝑖)(𝑘)𝑖

6

𝑖=1

 

  = 0𝑘1 + 0𝑘2 + 𝑘3 + 7𝑘4 + 6𝑘5 + 𝑘6 

  = 𝑘(𝑘 − 1)(𝑘 − 2) + 7(𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)) + 6(𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)(𝑘 −

4)) + 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)(𝑘 − 4)(𝑘 − 5) 

 = 𝑘(𝑘 − 1)(𝑘 − 2)[1 + 7(𝑘 − 3) + 6(𝑘 − 3)(𝑘 − 4) + (𝑘 − 3)(𝑘 − 4)(𝑘 − 5)] 

 = 𝑘(𝑘 − 1)(𝑘 − 2)[1 + 7𝑘 − 21 + 6𝑘2 − 42𝑘 + 72 + 𝑘3 − 12𝑘2 + 47𝑘 − 60] 

 = 𝑘(𝑘 − 1)(𝑘 − 2)[𝑘3 − 6𝑘2 + 12𝑘 − 8] 

 = 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 2)3 

 = 𝑘(𝑘 − 1)(𝑘 − 2)4. 

In general, we have that the chromatic polynomial of a fan  𝐹𝑛 for each integer n ≥ 3 is 

𝑃(𝐹𝑛, 𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2)𝑛−1. So, we have the following theorem. 
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Theorem 2.1 Let n ≥ 3 be a positive integer. The chromatic polynomial of a fan graph 𝐹𝑛 

is 

                                               𝑃(𝐹𝑛, 𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2)𝑛−1.                       

Proof. A fan graph 𝐹𝑛 has 𝑛 + 1 vertices, where one vertex, called a center, of degree n, 

two vertices of degree 2, and the others of degree 3. The center can be colored with k 

colors, the first vertex of degree 2 can be colored with 𝑘 − 1 colors and each one of the 

other 𝑛 − 1 vertices, in order, can be colored with 𝑘 − 2 colors. Therefore, 

𝑃(𝐹𝑛, 𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2)𝑛−1.              ■ 

 

For example, there are 6 different ways to color a fan  𝐹3 with 3 colors, red, blue, and 

green, as depicted in Figure 4.  

 

Figure 4.  Six different ways to color a fan  𝐹3 with 3 colors 
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