ON CHROMATIC POLYNOMIAL OF A FAN GRAPH
 (Polinomial Kromatik pada Graf Kipas)

Nur Ridwan Maulana, Kristiana Wijaya, Kiswara Agung Santoso
Graph, Combinatorics, and Algebra (GCA) Research Group
Deparment of Mathematics, FMIPA, Universitas Jember
Jl. Kalimantan 37 Jember 68121, Indonesia
E-mail: nurridwan46@gmail.com, \{kristiana, kiswara\}.fmipa @unej.ac.id

Abstract

A chromatic polynomial of a graph G is a special function that describes the number of ways we can achieve a proper coloring on the vertices of G given k colors. In this paper, we determine a chromatic polynomial of a fan graph.

Keywords: Proper coloring, chromatic polynomial, fan graph.
MSC 2010: 05C31, 05C15

1. Introduction

Let G be a simple labelled graph. A proper coloring of a graph G is an assignment of colors to each vertex of G such that no edge connects two identically colored vertices. The minimum number of colors needed to produce a proper coloring of a graph G is called a chromatic number of G and denoted by $\chi(G)$ [2]. If $\chi(G)=k$ means that the vertices of a graph G can be colored by k color, but it cannot be color by $k-1$ color.

Theorem 1.1 [1] A graph G with orders n has chromatic numbers equal to n if and only if G is a complete graph, namely $G=K_{n}$.

Theorem 1.2 [1] If H is a subgraph of a graph G, then $\chi(H) \leq \chi(G)$.
A chromatic polynomial of a graph was first introduced by George David Birkhof in 1912 and continued by Whitney in 1932. A chromatic polynomial of a graph G, denoted by $P(G, k)$, is a polynomial which encodes the number of distinct ways to color the vertices of G with k colors (where colorings are counted as distinct even if they differ only by permutation of colors). The chromatic number $\chi(G)$ is the least natural number k for which such a partition is possible. If $k<\chi(G)$ then $P(G, k)=0$. In this paper, we examined the chromatic polynomial of a fan graph.

The chromatic polynomial of some graphs have been obtained. A graph having n vertices but 0 edge, N_{n}, have the chromatic polynomial $P\left(N_{n}, k\right)=k^{n}$, while a complete graph on n vertices, K_{n}, have the chromatic polynomial $P\left(K_{n}, k\right)=k(k-1)(k-2) \ldots(k-$
$n+1)$. Read [4] proved that the chromatic polynomial of any tree having n vertices, T_{n}, is $P\left(T_{n}, k\right)=k(k-1)^{n-1}$. A color-partition of a graph $G=(V, E)$ is a partition of V into disjoint non-empty subsets, $\quad V=V_{1} \cup V_{2} \cup \cdots \cup V_{\mathrm{k}}$, such that the color-class V_{i} is an independent set of vertices in G, for each $1 \leq i \leq k$.

Theorem 1.3 [3] Let G be a graph of order n. Then, the chromatic polynomial of a graph G is $P(G, k)=\sum_{i=1}^{n} \alpha(G, i)(k)_{i}$ where $\alpha(G, i)$ is the number of color-partitions of G into i color-classes.

Read [4] gave the properties of the chromatic polynomial of a graph G with n vertices and m edges, in the following theorem.

Theorem 1.4 [4] Let $P(G, k)=a_{n} k^{n}+a_{n-1} k^{n-1}+\cdots+a_{1} k+a_{0}$ be a chromatic polynomial of a graph G with n vertices and m edges, then the following conditions are satisfied.
a. All the coefficients are integers (could be 0).
b. The order of the polynomial is n.
c. The coefficients of k^{n} is $1: a_{n}=1$.
d. The coefficients of k^{n-1} is $-m: a_{n-1}=-m$.
e. The coefficients of k^{0} is $0: a_{0}=0$.
f. Signs of coefficients alternate between positive and negative
g. If $m \neq 0$, then the sum of the coefficients on $P(G, k)$ is 0 .

2. Main Results

A fan graph F_{n} is a simple graph formed by connecting a single vertex to all vertices of a path on n vertices P_{n}. So, the fan graph F_{n} has $n+1$ vertices and $2 n-1$ edges. Let $V\left(F_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of F_{n}, where $\operatorname{deg}\left(v_{0}\right)=n, \operatorname{deg}\left(v_{1}\right)=$ $\operatorname{deg}\left(v_{n}\right)=2$ and $\operatorname{deg}\left(v_{i}\right)=3$ for $2 \leq i \leq n-1$ and $E\left(F_{n}\right)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n\right\} \cup$ $\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$ be the edge set of F_{n}. Before we discuss the chromatic polynomial of a fan, we give the chromatic number of a fan.

Lemma 2.1 Let $n \geq 3$ be an integer. Then, the chromatic number of a fan F_{n} is 3 , namely $\chi\left(F_{n}\right)=3$.

Proof. Since F_{n} contain a triangle K_{3} as a subgraph, according to Theorem 1.1 and Theorem 1.2, then $\chi\left(F_{n}\right) \geq 3$. Next, we will show that $\chi(G) \leq 3$ by giving color to fan graph. We define a coloring of the vertices of fan graph F_{n} as follows.

$$
f\left(v_{i}\right)= \begin{cases}1 & ; \quad i=0 \\ 2 & ; \\ 3 & ; \quad i \text { odd } \\ 3 & \text { even and } i \neq 0\end{cases}
$$

It can be seen easily that each adjacent vertex has a different color. So, $\chi(G) \leq 3$.

Now, we determine the chromatic polynomial of fan graph F_{n} for each integer $n \geq 3$. We consider a fan F_{3} as depicted in Figure 1.

Figure 1. A fan F_{3}
First, we look for all possible coloring of all vertices of F_{3}. Since $\chi\left(F_{3}\right)=3$, all possible coloring in all vertices of F_{3} started with three colors up to the number of vertices, that is four colors. Next, we determine the number of color-partitions of a fan F_{3}. Table 1 shows that all possibilities of coloring and partitioning of the vertex set of a fan F_{3}.

Table 1. A coloring possibility of F_{3}

If v_{i} and v_{j} have the same color	Another possible coloring	The color-classes	Number of partitions
$v_{1}=v_{3}$	$v_{0} \neq v_{2}$	$\left\{v_{1}, v_{3}\right\},\left\{v_{2}\right\},\left\{v_{0}\right\}$	3
All distinct	$v_{0} \neq v_{1} \neq v_{2} \neq v_{3}$	$\left\{v_{0}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}$	4

Based on Table 1, the number of color-partitions of F_{3} into i color-classes are $\alpha\left(F_{3}, 3\right)=$ 1 and $\alpha\left(F_{3}, 4\right)=1$. Thus, by Theorem 1.3 we obtain

$$
\begin{aligned}
P\left(F_{3}, k\right) & =\sum_{i=1}^{4} \alpha\left(F_{3}, i\right)(k)_{i} \\
& =0 k_{1}+0 k_{2}+k_{3}+k_{4} \\
& =k(k-1)(k-2)+k(k-1)(k-2)(k-3) \\
& =k(k-1)(k-2)(1+(k-3)) \\
& =k(k-1)(k-2)(k-2) \\
& =k(k-1)(k-2)^{2}
\end{aligned}
$$

Figure 2. A fan F_{4}
Now, we consider a fan graph F_{4} as depicted in Figure 2. Table 2 shows that all possibilities of coloring and partitioning of the vertex set of a fan F_{4}.

Table 2. A coloring possibility of F_{4}

If v_{i} and v_{j} have the same color	Another possible coloring	The color-classes	Number of partitions
$v_{1}=v_{3}$	$v_{2}=v_{4} \neq v_{0}$	$\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{0}\right\}$	3
$v_{1}=v_{3}$	$v_{2} \neq v_{4} \neq v_{0}$	$\left\{v_{1}, v_{3}\right\},\left\{v_{2}\right\},\left\{v_{0}\right\},\left\{v_{0}\right\}$	4
$v_{1}=v_{4}$	$v_{2} \neq v_{3} \neq v_{0}$	$\left\{v_{1}, v_{4}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{0}\right\}$	4
$v_{2}=v_{4}$	$v_{1} \neq v_{3} \neq v_{0}$	$\left\{v_{1}, v_{4}\right\},\left\{v_{1}\right\},\left\{v_{3}\right\},\left\{v_{0}\right\}$	4
All distinct	$v_{0} \neq v_{1} \neq v_{2} \neq v_{3} \neq v_{4}$	$\left\{v_{0}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\}$	5

Based on Table 2, the number of color-partitions of F_{4} into i color-classes are $\alpha\left(F_{4}, 3\right)=$ $1, \alpha\left(F_{4}, 4\right)=3$ and $\alpha\left(F_{4}, 5\right)=1$. So, by Theorem 1.3 we obtain the chromatic polynomial of a graph F_{4} as follows.

$$
\begin{aligned}
P\left(F_{3}, k\right) & =\sum_{i=1}^{4} \alpha\left(F_{3}, i\right)(k)_{i} \\
& =0 k_{1}+0 k_{2}+k_{3}+3 k_{4}+k_{5} \\
& =k(k-1)(k-2)+3(k(k-1)(k-2)(k-3))+k(k-1)(k-2)(k-3)(k-4) \\
& =k(k-1)(k-2)(1+3(k-3)+(k-3)(k-4)) \\
& =k(k-1)(k-2)\left(1+3 k-9+k^{2}-7 k+12\right) \\
& =k(k-1)(k-2)\left(k^{2}-4 k+4\right) \\
& =k(k-1)(k-2)(k-2)^{2} \\
& =k(k-1)(k-2)^{3}
\end{aligned}
$$

Figure 3. A fan F_{5}

Furthermore, we consider a fan graph F_{5} as depicted in Figure 3. The coloring of all vertices of F_{6} starts with 3 colors up to the number of vertices which is 6 colors. Table 3 shows that all possibilities of coloring and partitioning of the vertex set of a fan F_{5}.

Table 3. A coloring possibility of F_{5}

If v_{i} and v_{j} have the same color	Another possible coloring	The color-classes	Number of partitions
$v_{2}=v_{4}$	$v_{1}=v_{3}=v_{5} \neq v_{0}$	$\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{0}\right\}$	3
$v_{1}=v_{3}$	$v_{2}=v_{4} \neq v_{5} \neq v_{0}$	$\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{5}\right\},\left\{v_{0}\right\}$	4
$v_{1}=v_{3}$	$v_{2}=v_{5} \neq v_{4} \neq v_{0}$	$\left.\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{4}\right\}\right\}\left\{v_{0}\right\}$	4
$v_{1}=v_{4}$	$v_{2}=v_{5} \neq v_{3} \neq v_{0}$	$\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{0}\right\},\left\{v_{3}\right\},\left\{v_{0}\right\}$	4
$v_{1}=v_{4}$	$v_{3}=v_{5} \neq v_{2} \neq v_{0}$	$\left\{v_{1}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{2}\right\},\left\{v_{0}\right\}$	4
$v_{1}=v_{5}$	$v_{2}=v_{4} \neq v_{3} \neq v_{0}$	$\left\{v_{1}, v_{5}\right\},\left\{v_{2}, v_{0}\right\},\left\{v_{3}\right\},\left\{v_{0}\right\}$	4
$v_{2}=v_{4}$	$v_{3}=v_{5} \neq v_{1} \neq v_{0}$	$\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{1}\right\},\left\{v_{0}\right\}$	4
$v_{1}=v_{3}=v_{5}$	$v_{2} \neq v_{4} \neq v_{0}$	$\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{2}\right\},\left\{v_{4}\right\},\left\{v_{0}\right\}$	4
$v_{1}=v_{3}$	$v_{2} \neq v_{4} \neq v_{5} \neq v_{0}$	$\left\{v_{1}, v_{3}\right\},\left\{v_{2}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{0}\right\}$	5
$v_{1}=v_{4}$	$v_{2} \neq v_{3} \neq v_{5} \neq v_{0}$	$\left\{v_{1}, v_{4}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{5}\right\},\left\{v_{0}\right\}$	5
$v_{1}=v_{5}$	$v_{2} \neq v_{3} \neq v_{4} \neq v_{0}$	$\left\{v_{1}, v_{5}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{0}\right\}$	5
$v_{2}=v_{4}$	$v_{1} \neq v_{3} \neq v_{5} \neq v_{0}$	$\left\{v_{2}, v_{4}\right\},\left\{v_{1}\right\},\left\{v_{3}\right\},\left\{v_{5}\right\},\left\{v_{0}\right\}$	5
$v_{2}=v_{5}$	$v_{1} \neq v_{3} \neq v_{4} \neq v_{0}$	$\left\{v_{2}, v_{5}\right\},\left\{v_{1}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{0}\right\}$	5
$v_{3}=v_{5}$	$v_{1} \neq v_{2} \neq v_{4} \neq v_{0}$	$\left\{v_{3}, v_{5}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{4}\right\},\left\{v_{0}\right\}$	5
All distinct	$v_{0} \neq v_{1} \neq v_{2} \neq v_{3}$	$\left\{v_{0}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\}$	6
	$\neq v_{4} \neq v_{5}$		

Based on Table 3, the number of color-partitions of F_{5} into i color-classes are $\alpha\left(F_{5}, 3\right)=$ 1, $\alpha\left(F_{5}, 4\right)=7, \alpha\left(F_{5}, 5\right)=6$ and $\alpha\left(F_{5}, 6\right)=1$. So, by Theorem 1.3 we obtain the chromatic polynomial of a graph F_{5} as follows.

$$
\begin{aligned}
P\left(F_{5}, k\right)= & \sum_{i=1}^{6} \alpha\left(F_{5}, i\right)(k)_{i} \\
= & 0 k_{1}+0 k_{2}+k_{3}+7 k_{4}+6 k_{5}+k_{6} \\
= & k(k-1)(k-2)+7(k(k-1)(k-2)(k-3))+6(k(k-1)(k-2)(k-3)(k- \\
& 4))+k(k-1)(k-2)(k-3)(k-4)(k-5) \\
= & k(k-1)(k-2)[1+7(k-3)+6(k-3)(k-4)+(k-3)(k-4)(k-5)] \\
= & k(k-1)(k-2)\left[1+7 k-21+6 k^{2}-42 k+72+k^{3}-12 k^{2}+47 k-60\right] \\
= & k(k-1)(k-2)\left[k^{3}-6 k^{2}+12 k-8\right] \\
= & k(k-1)(k-2)(k-2)^{3} \\
= & k(k-1)(k-2)^{4} .
\end{aligned}
$$

In general, we have that the chromatic polynomial of a fan F_{n} for each integer $n \geq 3$ is $P\left(F_{n}, k\right)=k(k-1)(k-2)^{n-1}$. So, we have the following theorem.

Theorem 2.1 Let $n \geq 3$ be a positive integer. The chromatic polynomial of a fan graph F_{n} is

$$
P\left(F_{n}, k\right)=k(k-1)(k-2)^{n-1} .
$$

Proof. A fan graph F_{n} has $n+1$ vertices, where one vertex, called a center, of degree n, two vertices of degree 2, and the others of degree 3 . The center can be colored with k colors, the first vertex of degree 2 can be colored with $k-1$ colors and each one of the other $n-1$ vertices, in order, can be colored with $k-2$ colors. Therefore,

$$
P\left(F_{n}, k\right)=k(k-1)(k-2)^{n-1} .
$$

For example, there are 6 different ways to color a fan F_{3} with 3 colors, red, blue, and green, as depicted in Figure 4.

Figure 4. Six different ways to color a fan F_{3} with 3 colors

References

[1] Chartrand, G dan Lesniak, L. (1996). Graphs \& Digraphs, fifth edition. New York: Chapman \& Hall/CRC.
[2] Chartrand, G dan Oellerman, O. R. (1993). Apllied and Algorithmic Graph Theory. New York: McGraw-Hil, Inc.
[3] Dong, F. M., Koh, K. M., dan Teo, K. L. (2015). Chromatic Polynomial and Chromaticity of Graphs. Singapore: B \& JO Enterprise.
[4] Read, R. C. (1968). An Introduction to Chromatic Polynomials, J. Combin. Theory 4.

