ON CHROMATIC POLYNOMIAL OF A FAN GRAPH (Polinomial Kromatik pada Graf Kipas)

Nur Ridwan Maulana, Kristiana Wijaya, Kiswara Agung Santoso

Graph, Combinatorics, and Algebra (GCA) Research Group Deparment of Mathematics, FMIPA, Universitas Jember Jl. Kalimantan 37 Jember 68121, Indonesia E-mail: nurridwan46@gmail.com, {kristiana, kiswara}.fmipa @unej.ac.id

Abstract. A chromatic polynomial of a graph G is a special function that describes the number of ways we can achieve a proper coloring on the vertices of G given k colors. In this paper, we determine a chromatic polynomial of a fan graph.

Keywords: Proper coloring, chromatic polynomial, fan graph. **MSC 2010:** 05C31, 05C15

1. Introduction

Let *G* be a simple labelled graph. A proper coloring of a graph *G* is an assignment of colors to each vertex of *G* such that no edge connects two identically colored vertices. The minimum number of colors needed to produce a proper coloring of a graph *G* is called a *chromatic number* of *G* and denoted by $\chi(G)$ [2]. If $\chi(G) = k$ means that the vertices of a graph G can be colored by k color, but it cannot be color by k - 1 color.

Theorem 1.1 [1] A graph *G* with orders *n* has chromatic numbers equal to *n* if and only if *G* is a complete graph, namely $G = K_n$.

Theorem 1.2 [1] If *H* is a subgraph of a graph *G*, then $\chi(H) \leq \chi(G)$.

A chromatic polynomial of a graph was first introduced by George David Birkhof in 1912 and continued by Whitney in 1932. A chromatic polynomial of a graph *G*, denoted by P(G, k), is a polynomial which encodes the number of distinct ways to color the vertices of *G* with *k* colors (where colorings are counted as distinct even if they differ only by permutation of colors). The chromatic number $\chi(G)$ is the least natural number *k* for which such a partition is possible. If $k < \chi(G)$ then P(G, k) = 0. In this paper, we examined the chromatic polynomial of a fan graph.

The chromatic polynomial of some graphs have been obtained. A graph having n vertices but 0 edge, N_n , have the chromatic polynomial $P(N_n, k) = k^n$, while a complete graph on *n* vertices, K_n , have the chromatic polynomial $P(K_n, k) = k (k - 1)(k - 2) \dots (k - 1)(k - 2)(k - 2)(k$

n + 1). Read [4] proved that the chromatic polynomial of any tree having *n* vertices, T_n , is $P(T_n, k) = k \ (k - 1)^{n-1}$. A *color-partition* of a graph G = (V, E) is a partition of *V* into disjoint non-empty subsets, $V = V_1 \cup V_2 \cup \cdots \cup V_k$, such that the color-class V_i is an independent set of vertices in *G*, for each $1 \le i \le k$.

Theorem 1.3 [3] Let *G* be a graph of order *n*. Then, the chromatic polynomial of a graph *G* is $P(G, k) = \sum_{i=1}^{n} \alpha(G, i)(k)_i$ where $\alpha(G, i)$ is the number of color-partitions of *G* into *i* color-classes.

Read [4] gave the properties of the chromatic polynomial of a graph G with n vertices and m edges, in the following theorem.

Theorem 1.4 [4] Let $P(G,k) = a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0$ be a chromatic polynomial of a graph *G* with *n* vertices and *m* edges, then the following conditions are satisfied.

- a. All the coefficients are integers (could be 0).
- b. The order of the polynomial is *n*.
- c. The coefficients of k^n is 1: $a_n = 1$.
- d. The coefficients of k^{n-1} is -m: $a_{n-1} = -m$.
- e. The coefficients of k^0 is 0: $a_0 = 0$.
- f. Signs of coefficients alternate between positive and negative
- g. If $m \neq 0$, then the sum of the coefficients on P(G, k) is 0.

2. Main Results

A fan graph F_n is a simple graph formed by connecting a single vertex to all vertices of a path on *n* vertices P_n . So, the fan graph F_n has n + 1 vertices and 2n - 1 edges. Let $V(F_n) = \{v_0, v_1, v_2, ..., v_n\}$ be the vertex set of F_n , where $deg(v_0) = n$, $deg(v_1) = deg(v_n) = 2$ and $deg(v_i) = 3$ for $2 \le i \le n - 1$ and $E(F_n) = \{v_0v_i| 1 \le i \le n\} \cup \{v_iv_{i+1}| 1 \le i \le n - 1\}$ be the edge set of F_n . Before we discuss the chromatic polynomial of a fan, we give the chromatic number of a fan.

Lemma 2.1 Let $n \ge 3$ be an integer. Then, the chromatic number of a fan F_n is 3, namely $\chi(F_n) = 3$.

Proof. Since F_n contain a triangle K_3 as a subgraph, according to Theorem 1.1 and Theorem 1.2, then $\chi(F_n) \ge 3$. Next, we will show that $\chi(G) \le 3$ by giving color to fan graph. We define a coloring of the vertices of fan graph F_n as follows.

$$f(v_i) = \begin{cases} 1 & ; i = 0 \\ 2 & ; i \text{ odd} \\ 3 & ; i \text{ even and } i \neq 0 \end{cases}$$

It can be seen easily that each adjacent vertex has a different color. So, $\chi(G) \leq 3$.

Now, we determine the chromatic polynomial of fan graph F_n for each integer $n \ge 3$. We consider a fan F_3 as depicted in Figure 1.

Figure 1. A fan F_3

First, we look for all possible coloring of all vertices of F_3 . Since $\chi(F_3) = 3$, all possible coloring in all vertices of F_3 started with three colors up to the number of vertices, that is four colors. Next, we determine the number of color-partitions of a fan F_3 . Table 1 shows that all possibilities of coloring and partitioning of the vertex set of a fan F_3 .

If v_i and v_j have the same color	Another possible coloring	The color-classes	Number of partitions
$v_1 = v_3$	$v_0 \neq v_2$	$\{v_1, v_3\}, \{v_2\}, \{v_0\}$	3
All distinct	$v_0 \neq v_1 \neq v_2 \neq v_3$	$\{v_0\}, \{v_1\}, \{v_2\}, \{v_3\}$	4

Based on Table 1, the number of color-partitions of F_3 into *i* color-classes are $\alpha(F_3, 3) = 1$ and $\alpha(F_3, 4) = 1$. Thus, by Theorem 1.3 we obtain

$$P(F_3, k) = \sum_{i=1}^{4} \alpha(F_3, i)(k)_i$$

= $0k_1 + 0k_2 + k_3 + k_4$
= $k(k-1)(k-2) + k(k-1)(k-2)(k-3)$
= $k(k-1)(k-2)(1+(k-3))$
= $k(k-1)(k-2)(k-2)$
= $k(k-1)(k-2)^2$

Figure 2. A fan F_4

Now, we consider a fan graph F_4 as depicted in Figure 2. Table 2 shows that all possibilities of coloring and partitioning of the vertex set of a fan F_4 .

	01	• 1	
If v_i and v_j have the same color	Another possible coloring	The color-classes	Number of partitions
$v_1 = v_3$	$v_2 = v_4 \neq v_0$	$\{v_1, v_3\}, \{v_2, v_4\}, \{v_0\}$	3
$v_1 = v_3$	$v_2 \neq v_4 \neq v_0$	$\{v_1, v_3\}, \{v_2\}, \{v_4\}, \{v_0\}$	4
$v_1 = v_4$	$v_2 \neq v_3 \neq v_0$	$\{v_1, v_4\}, \{v_2\}, \{v_3\}, \{v_0\}$	4
$v_2 = v_4$	$v_1 \neq v_3 \neq v_0$	$\{v_1, v_4\}, \{v_1\}, \{v_3\}, \{v_0\}$	4
All distinct	$v_0 \neq v_1 \neq v_2 \neq v_3 \neq v_4$	$\{v_0\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}$	5

Table 2. A coloring possibility of F_4

Based on Table 2, the number of color-partitions of F_4 into *i* color-classes are $\alpha(F_4, 3) = 1$, $\alpha(F_4, 4) = 3$ and $\alpha(F_4, 5) = 1$. So, by Theorem 1.3 we obtain the chromatic polynomial of a graph F_4 as follows.

$$\begin{split} P(F_3,k) &= \sum_{i=1}^4 \alpha(F_3,i)(k)_i \\ &= 0k_1 + 0k_2 + k_3 + 3k_4 + k_5 \\ &= k(k-1)(k-2) + 3\big(k(k-1)(k-2)(k-3)\big) + k(k-1)(k-2)(k-3)(k-4) \big) \\ &= k(k-1)(k-2)(1+3(k-3)+(k-3)(k-4)) \\ &= k(k-1)(k-2)(1+3k-9+k^2-7k+12) \\ &= k(k-1)(k-2)(k^2-4k+4) \\ &= k(k-1)(k-2)(k-2)^2 \\ &= k(k-1)(k-2)^3 \end{split}$$

Figure 3. A fan F_5

Furthermore, we consider a fan graph F_5 as depicted in Figure 3. The coloring of all vertices of F_6 starts with 3 colors up to the number of vertices which is 6 colors. Table 3 shows that all possibilities of coloring and partitioning of the vertex set of a fan F_5 .

If v_i and v_j have the same color	Another possible coloring	The color-classes	Number of partitions
$v_2 = v_4$	$v_1 = v_3 = v_5 \neq v_0$	$\{v_2, v_4\}, \{v_1, v_3, v_5\}, \{v_0\}$	3
$v_1 = v_3$	$v_2 = v_4 \neq v_5 \neq v_0$	$\{v_1, v_3\}, \{v_2, v_4\}, \{v_5\}, \{v_0\}$	4
$v_1 = v_3$	$v_2 = v_5 \neq v_4 \neq v_0$	$\{v_1, v_3\}, \{v_2, v_5\}, \{v_4\}, \{v_0\}$	4
$v_1 = v_4$	$v_2 = v_5 \neq v_3 \neq v_0$	$\{v_1, v_4\}, \{v_2, v_5\}, \{v_3\}, \{v_0\}$	4
$v_1 = v_4$	$v_3 = v_5 \neq v_2 \neq v_0$	$\{v_1, v_4\}, \{v_3, v_5\}, \{v_2\}, \{v_0\}$	4
$v_1 = v_5$	$v_2 = v_4 \neq v_3 \neq v_0$	$\{v_1, v_5\}, \{v_2, v_4\}, \{v_3\}, \{v_0\}$	4
$v_2 = v_4$	$v_3 = v_5 \neq v_1 \neq v_0$	$\{v_2, v_4\}, \{v_3, v_5\}, \{v_1\}, \{v_0\}$	4
$v_1 = v_3 = v_5$	$v_2 \neq v_4 \neq v_0$	$\{v_1, v_3, v_5\}, \{v_2\}, \{v_4\}, \{v_0\}$	4
$v_1 = v_3$	$v_2 \neq v_4 \neq v_5 \neq v_0$	$\{v_1, v_3\}, \{v_2\}, \{v_4\}, \{v_5\}, \{v_0\}$	5
$v_1 = v_4$	$v_2 \neq v_3 \neq v_5 \neq v_0$	$\{v_1, v_4\}, \{v_2\}, \{v_3\}, \{v_5\}, \{v_0\}$	5
$v_1 = v_5$	$v_2 \neq v_3 \neq v_4 \neq v_0$	$\{v_1, v_5\}, \{v_2\}, \{v_3\}, \{v_4\}, \{v_0\}$	5
$v_2 = v_4$	$v_1 \neq v_3 \neq v_5 \neq v_0$	$\{v_2, v_4\}, \{v_1\}, \{v_3\}, \{v_5\}, \{v_0\}$	5
$v_2 = v_5$	$v_1 \neq v_3 \neq v_4 \neq v_0$	$\{v_2, v_5\}, \{v_1\}, \{v_3\}, \{v_4\}, \{v_0\}$	5
$v_3 = v_5$	$v_1 \neq v_2 \neq v_4 \neq v_0$	$\{v_3, v_5\}, \{v_1\}, \{v_2\}, \{v_4\}, \{v_0\}$	5
All distinct	$v_0 \neq v_1 \neq v_2 \neq v_3$ $\neq v_4 \neq v_5$	$\{v_0\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}$	6

Table 3. A coloring possibility of F_5

Based on Table 3, the number of color-partitions of F_5 into *i* color-classes are $\alpha(F_5, 3) = 1$, $\alpha(F_5, 4) = 7$, $\alpha(F_5, 5) = 6$ and $\alpha(F_5, 6) = 1$. So, by Theorem 1.3 we obtain the chromatic polynomial of a graph F_5 as follows.

$$\begin{split} P(F_5,k) &= \sum_{i=1}^{6} \alpha(F_5,i)(k)_i \\ &= 0k_1 + 0k_2 + k_3 + 7k_4 + 6k_5 + k_6 \\ &= k(k-1)(k-2) + 7(k(k-1)(k-2)(k-3)) + 6(k(k-1)(k-2)(k-3)(k-4)) \\ &+ k(k-1)(k-2)(k-3)(k-4)(k-5) \\ &= k(k-1)(k-2)[1 + 7(k-3) + 6(k-3)(k-4) + (k-3)(k-4)(k-5)] \\ &= k(k-1)(k-2)[1 + 7k - 21 + 6k^2 - 42k + 72 + k^3 - 12k^2 + 47k - 60] \\ &= k(k-1)(k-2)[k^3 - 6k^2 + 12k - 8] \\ &= k(k-1)(k-2)(k-2)^3 \\ &= k(k-1)(k-2)^4. \end{split}$$

In general, we have that the chromatic polynomial of a fan F_n for each integer $n \ge 3$ is $P(F_n, k) = k(k-1)(k-2)^{n-1}$. So, we have the following theorem.

Theorem 2.1 Let $n \ge 3$ be a positive integer. The chromatic polynomial of a fan graph F_n is

$$P(F_n, k) = k(k-1)(k-2)^{n-1}.$$

Proof. A fan graph F_n has n + 1 vertices, where one vertex, called a center, of degree n, two vertices of degree 2, and the others of degree 3. The center can be colored with k colors, the first vertex of degree 2 can be colored with k - 1 colors and each one of the other n - 1 vertices, in order, can be colored with k - 2 colors. Therefore,

$$P(F_n, k) = k(k-1)(k-2)^{n-1}.$$

For example, there are 6 different ways to color a fan F_3 with 3 colors, red, blue, and green, as depicted in Figure 4.

Figure 4. Six different ways to color a fan F_3 with 3 colors

References

- [1] Chartrand, G dan Lesniak, L. (1996). *Graphs & Digraphs, fifth edition*. New York: Chapman & Hall/CRC.
- [2] Chartrand, G dan Oellerman, O. R. (1993). *Apllied and Algorithmic Graph Theory*. New York: McGraw-Hil, Inc.
- [3] Dong, F. M., Koh, K. M., dan Teo, K. L. (2015). *Chromatic Polynomial and Chromaticity of Graphs*. Singapore: B & JO Enterprise.
- [4] Read, R. C. (1968). An Introduction to Chromatic Polynomials, J. Combin. Theory 4.