Aplikasi Persamaan Regresi Linier untuk Memprediksi Kebutuhan Kapur Tohor dan Biaya Netralisasi Air Asam Tambang

Application of Linear Regression Equation to Predict Quicklime Needs and Acid Mine Water Neutralization Costs

  • Esthi Kusdarini Institut Teknologi Adhi Tama Surabaya
  • Yuliano Atawolo Institut Teknologi Adhi Tama Surabaya
  • Fairus Atika Redanto Putri Institut Teknologi Adhi Tama Surabaya http://orcid.org/0009-0005-6854-5255

Abstract

Abstract


Acid mine drainage has the potential to pollute water bodies. One method of acid mine drainage treatment is neutralization using quicklime. This study aims to plan the dose of quicklime and estimate the cost of neutralizing acid mine drainage using a linear regression equation. Acid mine drainage samples were obtained from PT Bukit Asam. Neutralization experiments were carried out on a laboratory scale using variable doses of quicklime: 0.0759, 0.0971, 0.1460, 0.2965, and 0.3877 g/L. The results showed that the acid mine drainage samples contained parameters of pH 3.6, TSS 87 mg/L, Fe 1.1239 mg/L, and Mn 3.8333 mg/L. Neutralization of acid mine drainage using quicklime at a dose of 0.1460-0.2965 g/L was able to increase pH by 33-153% and decrease TSS by 2-94%, Fe by 24-87%, and Mn by 14-43%. The linear regression equation obtained is y = 13.707x + 4.103, where x is the dose of quicklime (g/L) and y is pH. Calculations using the linear regression equation produce a dose requirement of quicklime of 0.1383–0.3572 g/L to produce acid mine water with a pH of 6-9. Meanwhile, processing acid mine water with a discharge of 86,400 m³/day requires quicklime of 11,949-30,862.08 kg/day and costs of Rp10,156,650.00–26,232,700.00/day.


Keywords: Acid mine drainage, quicklime, neutralization, linear regression


Abstrak


Air asam tambang berpotensi mencemari badan air. Salah satu metode pengolahan air asam tambang adalah netralisasi menggunakan kapur tohor. Penelitian ini bertujuan untuk merencanakan dosis kapur tohor dan memperkirakan biaya netralisasi air asam tambang menggunakan persamaan regresi linier. Sampel air asam tambang diperoleh dari PT Bukit Asam. Percobaan netralisasi dilakukan dalam skala laboratorium menggunakan variabel dosis kapur tahor : 0,0759; 0,0971; 0,1460; 0,2965; 0,3877 g/L. Hasil penelitian menunjukkan bahwa sampel air asam tambang mengandung parameter pH 3,6; TSS 87 mg/L; Fe 1,1239 mg/L; Mn 3,8333 mg/L. Netralisasi air asam tambang menggunakan kapur tohor dosis 0,1460-0,2965 g/L mampu menaikkan pH 33-153%; menurunkan : TSS 2-94%, Fe 24-87%, dan Mn 14-43%. Persamaan regresi linear yang diperoleh adalah y = 13,707x + 4,103; dengan x adalah dosis kapur tohor (g/L) dan y adalah pH. Perhitungan menggunakan persamaan regresi linear menghasilkan kebutuhan dosis kapur tohor sebesar 0,1383 – 0,3572 g/L untuk menghasilkan air asam tambang pH 6-9. Sedangkan untuk mengolah air asam tambang dengan debit 86.400 m3/hari membutuhkan kapur tohor sebesar 11.949-30.862,08 kg/hari dan biaya Rp 10.156.650,00 – 26.232.700,00/hari.


Kata kunci: Air asam tambang, Kapur tohor, Netralisasi, Regresi linear

Author Biographies

Esthi Kusdarini, Institut Teknologi Adhi Tama Surabaya

Mining Engineering Study Program
Faculty of Industrial Technology, Institut Teknologi Adhi Tama Surabaya
Jl. Arief Rahman Hakim 100 Surabaya

Yuliano Atawolo, Institut Teknologi Adhi Tama Surabaya

Mining Engineering Study Program
Faculty of Industrial Technology, Institut Teknologi Adhi Tama Surabaya
Jl. Arief Rahman Hakim 100 Surabaya

Fairus Atika Redanto Putri, Institut Teknologi Adhi Tama Surabaya

Mining Engineering Study Program
Faculty of Industrial Technology, Institut Teknologi Adhi Tama Surabaya
Jl. Arief Rahman Hakim 100 Surabaya

References

A Budianto, E Kusdarini, NH Amrullah, E Ningsih, K Udyani, A. A. (2021). Physics and chemical activation to produce activated carbon from empty palm oil bunches waste. IOP Conference Series: Materials Science and Engineering. IOP Publishing.
Anonim. (2021). Kamus Besar Bahasa Indonesia Daring (p. diakses 12 Februari 2021 06.05 WIB). p. diakses 12 Februari 2021 06.05 WIB. Jakarta: Kementerian Pendidikan dan Kebudayaan Republik Indonesia.
Budianto, A., Kusdarini, E., Effendi, S. S. W., & Aziz, M. (2019). The Production of Activated Carbon from Indonesian Mangrove Charcoal. IOP Conference Series: Materials Science and Engineering, 462(1). https://doi.org/10.1088/1757-899X/462/1/012006
Budianto, A., Kusdarini, E., Mangkurat, W., Nurdiana, E., & Asri, N. (2021). Activated Carbon Producing from Young Coconut Coir and Shells to Meet Activated Carbon Needs in Water Purification Process. Journal of Physics: Conference Series. Surabaya: IOP Publishing.
Gautama, P. D. I. R. S. (2019). Pembentukan, Pengendalian dan Pengelolaan Air Asam Tambang (II). Bandung: ITB Press.
Hair, J. M. S. C. R. J. mena. (2011). PLS SEM: Indeed A Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139–151.
Hajihashemi, S., Rajabpoor, S., & Schat, H. (2023). Acid mine drainage (AMD) endangers pomegranate trees nearby a copper mine Author. Science of The Total Environment. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.164269
Hidup, K. L. (2003). Keputusan Menteri Negara Lingkungan Hidup Nomor 113 Tahun 2003 Tentang Baku Mutu Air Limbah Bagi Usaha Dan Atau Kegiatan Pertambangan Batu Bara.
Iizuka, A., Ho, H.-J., Sasaki, T., Yoshida, H., Hayakawa, Y., & Yamasaki, A. (2022). Comparative study of acid mine drainage neutralization by calcium hydroxide and concrete sludge–derived material Author. Minerals Engineering, 188. https://doi.org/https://doi.org/10.1016/j.mineng.2022.107819
Indonesia, P. R. (2021). Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup.
Jung, Y.-Y., Choi, S.-H., Choi, M., Bong, Y.-S., Park, M.-Y., Lee, K.-S., & Shin, W.-J. (2023). Acid mine drainage and smelter-derived sources affecting water geochemistry in the upper Nakdong River, South Korea Author. Science of The Total Environment, 880. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.163353
Kusdarini, E., & Budianto, A. (2018). Removal of Manganese from Well-Water on Pasuruan, East Java, Indonesia Using Fixed Bed Cation Exchanger and Prediction of Kinetics Adsorption. Indian Journal of Science and Technology, 11(23), 1–7.
Kusdarini, E., & Budianto, A. (2022). Characteristics and Adsorption Test of Activated Carbon from Indonesian Bituminous Coal. Journal of Ecological Engineering, 23(10), 1–15. https://doi.org/https://doi.org/10.12911/22998993/152343
Kusdarini, E., Budianto, A., & Ghafarunnisa, D. (2017). Produksi Karbon Aktif dari Batubara Bituminus dengan Aktivasi Tunggal H3PO4, Kombinasi H3PO4-NH4HCO3, dan Termal. Reaktor, 17(2), 74–80. https://doi.org/http://dx.doi.org/10.14710/reaktor.17.2.74-80
KUSDARINI, E., HAKIM, L., YANUWIADI, B., & SUYADI, S. (2021). Study in the Development of Fixed Bed Filter Adoption of Public Health of Lake Water Users. Walailak Journal of Science and Technology, 18(8), 1–10. https://doi.org/https://doi.org/10.48048/wjst.2021.9131
Kusdarini, E., Pradana, D. R., & Budianto, A. (2022). Production of Activated Carbon from High-Grade Bituminous Coal to Removal Cr (VI). Reaktor, 22(1), 14–20. https://doi.org/https://doi.org/10.14710/reaktor.22.1.14-20
Kusdarini, E., Purwaningsih, D. Y., & Budianto, A. (2018). Adsorption of Pb2+ Ion in Water Well with Amberlite Ir 120 Na Resin. Pollution Research, 37(4), 307–312.
Kusdarini, E., Purwaningsih, D. Y., & Budianto, A. (2021). Removal Pb2+ of Well Water using Purolite C-100 Resin and Adsorption Kinetic. Pollution Research, 40(2).
Kusdarini, E., Suyadi, S., Yanuwiadi, B., & Hakim, L. (2019). Analysis of Water Sources Availability and Water Quality in Dry and Rainy Season in Dry Land Areas, North Gresik, Indonesia. Pollution Research, 38(4), 58–65.
Kusdarini, E., Yanuwiadi, B., Hakim, L., & Suyadi, S. (2020). Adoption Model of Water Filter by The Society of Lake Water Users in Dry Land Area, Gresik, East Java, Indonesia. International Journal on Advanced Science Engineering Information Technology, 10(5), 2089–2096.
Ogugua, U. V., Kanu, S. A., & Ntushelo, K. (2022). Gibberellic acid improves growth and reduces heavy metal accumulation: A case study in tomato (Solanum lycopersicum L.) seedlings exposed to acid mine water. Heliyon, (12). https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e12399
Qin, J., Wang, X., Deng, M., Li, H., & Lin, C. (2022). Red mud-biochar composites (co-pyrolyzed red mud-plant materials): Characteristics and improved efficacy on the treatment of acidic mine water and trace element-contaminated soils. Science of The Total Environment, 844. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.157062
Roulia, M., Alexopoulos, D., Itskos, G., & Vasilatos, C. (2022). Lignite fly ash utilization for acid mine drainage neutralization and clean-up Author. Cleaner Materials, 6. https://doi.org/https://doi.org/10.1016/j.clema.2022.100142
Silva, G. C., Bertoli, A. C., Duarte, H. A., & Ladeira, A. C. Q. (2022). Recovery of rare earth elements from sulfate-rich acid mine water: Looking through the keyhole the exchange reaction for cationic resin. Journal of Environmental Chemical Engineering, 10(6). https://doi.org/https://doi.org/10.1016/j.jece.2022.108715
Song, Y., Guo, Z., Wang, R., Yang, L., Cao, Y., & Wang, H. (2022). A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization. Water Research, 221. https://doi.org/https://doi.org/10.1016/j.watres.2022.118748
Weinberg, R., Coyte, R., Wang, Z., Das, D., & Vengosh, A. (2022). Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel, 330. https://doi.org/https://doi.org/10.1016/j.fuel.2022.125675
Wibowo, Y. G., Sudibyo, Naswir, M., & Ramadan, B. S. (2022). Performance of a novel biochar-clamshell composite for real acid mine drainage treatment. Bioresource Technology Reports, 17. https://doi.org/https://doi.org/10.1016/j.biteb.2022.100993
Xia, S., Song, Z., Zhao, X., & Li, J. (2023). Review of the recent advances in the prevention, treatment, and resource recovery of acid mine wastewater discharged in coal mines. Journal of Water Process Engineering, 52. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103555
Published
2024-12-08
How to Cite
KUSDARINI, Esthi; ATAWOLO, Yuliano; PUTRI, Fairus Atika Redanto. Aplikasi Persamaan Regresi Linier untuk Memprediksi Kebutuhan Kapur Tohor dan Biaya Netralisasi Air Asam Tambang. Jurnal Rekayasa Sipil dan Lingkungan, [S.l.], v. 8, n. 2, p. 134-145, dec. 2024. ISSN 2548-9518. Available at: <https://jurnal.unej.ac.id/index.php/JRSL/article/view/52075>. Date accessed: 21 dec. 2024. doi: https://doi.org/10.19184/jrsl.v8i2.52075.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.