48062 juga

by Mokhammad Farid Maruf
Analisis Spasial Daerah Rawan Banjir Berbasis Sistem Informasi Geografis sebagai Upaya Mitigasi di DAS Gembong

Spatial Analysis of Flood Hazard Analysis as Mitigation Effort in Gembong Watershed

Amanda Putri Maharani a, 2, Ery Suhartanto b, Linda Prasetyorini b

a Program Studi Teknik Pengairan, Mahasiswa Universitas Brawijaya, Jl. MT. Haryono No. 167, Kota Malang 65145
b Program Studi Teknik Pengairan, Universitas Brawijaya, Jl. MT. Haryono No. 167, Kota Malang 65145

ABSTRAK

Gembong termasuk salah satu DAS yang sering dilanda banjir tiap tahunnya. Banjir pada DAS Gembong sering terjadi akibat dari curah hujan yang tinggi. Selain dari faktor curah hujan, terdapat beberapa faktor lain seperti tutupan lahan, kemiringan lereng, ketinggian lahan (elevasi), jenis tanah, dan kerapatan sungai. Keenam faktor tersebut digunakan sebagai parameter rawan banjir pada penelitian ini. Tujuan penelitian ini untuk menentukan tingkat kerawanan banjir di DAS Gembong serta upaya mitigasinya yang dimana dapat dimanfaatkan untuk memperoleh informasi mengenai tingkat kerawanan banjir di daerah DAS Gembong serta dapat menentukan tindakan mitigasinya. Metode yang digunakan melibatkan skoring dan pembobotan parameter-parameter rawan banjir sesuai dengan klasifikasinya. Selanjutnya, data-data tersebut akan di-overlay menggunakan perangkat lunak ArcGIS 10.4.1. Berdasarkan hasil analisis pemetaan rawan banjir di DAS Gembong, diperoleh 5 tingkat rawan banjir yaitu, tingkat sangat tinggi sebesar 4,26 km² (7,36%), tingkat tinggi sebesar 22,96 km² (39,66%), tingkat sedang sebesar 24,10 km² (41,63%), tingkat rendah sebesar 5,67 km² (8,76%), dan tingkat sangat rendah sebesar 1,50 km² (2,59%). Kemudian dalam upaya mitigasi struktural direncanakan 5 embung kecil dan 2 kolam retensi. Kemudian, dalam mitigasi non-struktural dengan sistem peringatan dini, diperoleh tingkat status banjir yang diwakili adalah 4, yaitu tingkat status Normal, Waspadai, Siaga, dan Awas.

Kata kunci: Rawan Banjir, Pemetaan, Mitigasi, Sistem Informasi Geografis

ABSTRACT

Gembong Watershed is one of the watersheds frequently affected by floods every year. Flooding in the Gembong Watershed often occurs due to high rainfall. Besides rainfall, several other factors contribute to flooding, such as land cover, slope gradient, elevation, soil type, and river density. These six factors are used as flood-prone parameters in this study. The purpose of this study is to determine the flood prone level in the Gembong Watershed and its mitigation efforts, which can be utilized to obtain information about the level of flood-prone in the Gembong watershed area and to determine mitigation actions. The method used involves scoring and weighting the flood-prone parameters according to their classifications and will be overlaid using ArcGIS 10.4.1 software. Based on the flood prone mapping analysis in the Gembong Watershed, five levels of flood vulnerability were identified: very high with an area of 4.26 km² (7.36%), high with an area of 22.96 km² (39.66%), moderate with an area of 24.10 km² (41.63%), low with an area of 5.67 km² (8.76%), and very low with an area of 1.50 km² (2.59%). For structural mitigation efforts, five small reservoirs and two retention ponds are planned. For non-structural mitigation, an early warning system will be implemented with four flood status levels: Normal, Moderate, Critical, and Emergency.

1 Info Artikel: Received: 17 Mei 2024, Accepted: 11 Juni 2024 (bagian ini diisi Pengelola JRSL)
2 Corresponding Author: Amanda Putri Maharani, amandamhm04@gmail.com

70 | Aplikasi Koengulas pada Air...
PENDAHULUAN

Indonesia adalah negara yang mempunyai banyak wilayah dengan risiko bencana alam tinggi, seperti banjir, cuaca ekstrem, gempa bumi, dan tsunami (Soebroto et al., 2024). Bencana banjir khususnya di Indonesia merupakan salah satu bencana yang terus terjadi di setiap tahun (Sulaeman et al., 2017). Banjir dapat didefinisikan sebagai aliran air yang relatif tinggi yang meluap melewati sungai atau saluran buatan (Kurniyaningrum et al., 2019). Banjir seringkali terjadi di daerah-daerah bertopografi rendah, seperti cekungan, dan tingkat curah hujan tinggi. Terutama di daerah perkotaan, banjir sering terjadi karena perubahan penggunaan lahan yang tidak diimbangi dengan tata kelola saluran air yang memadai (Aziza et al., 2021). Bencana banjir tidak hanya memberikan dampak fisik yang nyata, tetapi juga menimbulkan kerugian di berbagai aspek kehidupan masyarakat.

Pemetaan daerah rawan banjir diperlukan untuk memberikan informasi yang memungkinkan pemerintah mengambil kebijakan yang tepat dalam menanggulangi masalah tersebut (Sitorus et al., 2021). Langkah awal dalam pemetaan adalah menilai tingkat kerawanan terhadap banjir dengan memperhitungkan pengaruh faktor-faktor penyebab banjir. Kemudian, tingkat kerawanan tersebut diolah secara spasial melalui visualisasi peta yang menunjukkan daerah rawan banjir (Rakusa et al., 2022). Oleh karena itu, memetakan daerah rawan banjir DAS Gembong dilakukan dengan menggunakan metode skoring dan pembobotan kemudian dilakukan overlay menggunakan perangkat lunak ArcGIS 10.4.1. Perbedaan dari penelitian sebelumnya, dalam penelitian ini tidak hanya memetakan daerah rawan banjir, tetapi juga dilakukan perencanaan upaya mitigasi banjir secara struktural maupun non-struktural yang komprehensif. Tujuan dari penelitian ini adalah untuk menentukan tingkat kerawanan terhadap banjir di DAS Gembong serta pentingnya dapat ditentukan upaya mitigasi secara struktural maupun non-struktural yang dapat dilakukan untuk menanggulangi bencana banjir di DAS Gembong.

METODE PENELITIAN

Daerah penelitian berlokasi di Daerah Aliran Sungai Gembong yang dimana bagian hulu nya berada di Kabupaten Pasuruan dan bagian hilirnya berada di Kota Pasuruan. DAS Gembong sendiri memiliki luas sebesar 57,88 km². Letak geografis DAS Gembong antara 7°37’39”LS 47°23”LS dan 112°55’16”BT - 112°48’58”BT. Pada DAS Gembong terdapat 4 pos BSS yang digunakan dalam penelitian ini dan juga terdapat 1 pos duga air yang disajikan pada Gambar 1.
Data Penelitian

Dalam penyusunan penelitian ini data yang digunakan mencakup data sekunder. Berikut merupakan beberapa data yang dibutuhkan yaitu:

- Data koordinat stasiun hujan di DAS Gembong dari PUSDA Jawa Timur
- Data curah hujan selama 20 tahun (2003-2022) dari PUSDA Jawa Timur
- Peta DAS Gembong dari PUSDA Jawa Timur
- Peta tutupan lahan Jawa Timur tahun 2022 dari PUSDA Jawa Timur
- Peta jenis tanah Jawa Timur dari PUSDA Jawa Timur
- Peta administrasi wilayah Kota Pasuruan dan Kabupaten Pasuruan
- Data historis banjir di DAS Gembong dari BPBD Kota Pasuruan dan BPBD Kabupaten Pasuruan

Analisis Data

Analisis mengenai wilayah studi perlu dilakukan terlebih dahulu dengan tujuan untuk mengetahui Gambaran dari lokasi studi (Francisdito et al., 2023). Berikut merupakan tahapan pengerjaan dari perhitungan hingga pembuatan peta rawan banjir, yaitu:

1. Perhitungan Hujan Rancangan
 Analisis perhitungan hujan rancangan dalam penelitian ini menggunakan 2 metode distribusi, yaitu Metode Gumbel dan Metode Log Pearson III. Hujan rancangan pada penelitian ini nantinya akan digunakan untuk pembuatan peta hujan rancangan sebagai salah satu parameter dalam pembuatan peta rawan banjir.

2. Pembuatan Peta Rawan Banjir
 a. Parameter-parameter Rawan Banjir
 1) Curah Hujan Rancangan

Aplikasi Koagulasi pada Air...
Curah hujan terbesar yang terjadi setiap tahun dengan periode ulang tertentu. Semakin tinggi curah hujan, semakin tinggi debit air yang mengalir di sungai, sehingga meningkatkan risiko banjir dan potensi bencana bagi suatu daerah (Adidarma et al., 2014). Berikut disajikan pada Tabel 1 Klasifikasi Curah Hujan Rencangan.

<table>
<thead>
<tr>
<th>No</th>
<th>Rentang curah hujan (mm)</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>400</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>300-400</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>200-300</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>100-200</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td><100</td>
<td>1</td>
</tr>
</tbody>
</table>

Sumber: Adidarma et al., 2014 Tutupan Lahan

<table>
<thead>
<tr>
<th>No</th>
<th>Tipe Tutupan Lahan</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hutan</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Semak belukar</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Ladang/Tegalan/Kebun</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Sawah/Tanah</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Pemukiman</td>
<td>5</td>
</tr>
</tbody>
</table>

Sumber: Theml, S., 2008 dalam Darmawan et al., 2017

Kemiringan Lereng

Semakin curam kemiringan lerengnya, semakin rendah peluang terjadinya banjir, begitu juga sebaliknya. Berikut disajikan pada Tabel 3 Klasifikasi Kemiringan Lereng.

<table>
<thead>
<tr>
<th>No</th>
<th>Kemiringan (%)</th>
<th>Deskripsi</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 - 8</td>
<td>Datar</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>>8 - 15</td>
<td>Landai</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>>15 - 25</td>
<td>Agak curam</td>
<td>3</td>
</tr>
</tbody>
</table>

Febriani, Badriati, dan Kartini | 73
<table>
<thead>
<tr>
<th>No</th>
<th>Kemiringan (%)</th>
<th>Deskripsi</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>>25 - 45</td>
<td>Curam</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>>45</td>
<td>Sangat Curam</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Elevasi (m)</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><10</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10-50</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>50-100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>100-200</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>>200</td>
<td>1</td>
</tr>
</tbody>
</table>

Sumber: Theml, S., 2008 dalam Darmawan et al., 2017

2) Jenis Tanah
Semakin tinggi tingkat dan serap atau infiltrasi air, semakin rendah kemungkinan terjadinya banjir. Jika, semakin rendah tingkat daya serap atau infiltrasi air, semakin tinggi kemungkinan terjadinya banjir. Berikut disajikan pada Tabel 5 Klasifikasi Jenis Tanah.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Tanah</th>
<th>Infiltrasi</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aluvial, Planosol, Hidromorf kelau, Laterik air tanah</td>
<td>Tidak peka</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Latosol</td>
<td>Agak peka</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Tanah hutan coklat, Tanah mediteranian</td>
<td>Kepekaan sedang</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Andosol, Laterik, Grumosol, Podsol, Podsolic</td>
<td>Peka</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Regosol, Litosol, Organosol, Renzina</td>
<td>Sangat peka</td>
<td>1</td>
</tr>
</tbody>
</table>

Sumber: Asdak, 1995 dalam Darmawan et al., 2017

3) Kerapatan Sungai
Semakin besar nilai kerapatan sungai, semakin tinggi pula kerapatan sungai di daerah tersebut, yang berarti semakin besar jumlah total air yang mengalir di daerah tersebut. Oleh karena itu, penulis menuliskan nilai klasifikasi berdasarkan tingkat kerapatan rendah, yang berarti nilainya juga rendah. Berikut disajikan pada Tabel 6 Klasifikasi Kerapatan Sungai.
b. Pembobotan dan Skoring

Pembobotan adalah proses memberikan bobot pada setiap parameter dalam peta spasial yang mempengaruhi banjir, berdasarkan pertimbangan dampak tiap parameter terhadap kejadian banjir. Skoring dilakukan untuk menilai setiap kelas dalam setiap parameter berdasarkan dampak kelas tersebut terhadap kejadian banjir. Semakin besar dampaknya terhadap kejadian banjir, semakin tinggi nilai skornya (Darmawan et al., 2017). Dikarenakan pada referensi (Darmawan et al., 2017) untuk total bobot tiap parameter tidak genap atau dalam artian totalnya tidak menunjukkan 1, maka penulis memodifikasi bobot tersebut sesuai dengan tingkat parameter yang berpengaruh terhadap banjir. Berikut disajikan pada Tabel 7 bobot tiap parameter rawan banjir.

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Bobot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kemiringan lahan</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>Ketinggian Lahan (Elevasi)</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>Jenis tanah</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>Curah hujan</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>Tutupan Lahan</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>Kerapatan sungai</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Sumber: Primayuda, 2006 dalam Darmawan et al., 2017 dengan modifikasi penulis

3. Analisis Upaya Mitigasi Banjir

HASIL DAN PEMBAHASAN

Pemetaan Daerah Rawan Banjir

1. Peta Hujan Rancangan

Gambar 2 Peta Hujan Rancangan DAS Gembong

<table>
<thead>
<tr>
<th>No.</th>
<th>Rentang Curah Hujan (mm)</th>
<th>Nilai</th>
<th>Luas (km²)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>134 - 140</td>
<td>2</td>
<td>2,37</td>
<td>4,10</td>
</tr>
<tr>
<td>2</td>
<td>141 - 147</td>
<td>2</td>
<td>4,47</td>
<td>7,73</td>
</tr>
<tr>
<td>3</td>
<td>148 - 154</td>
<td>2</td>
<td>15,20</td>
<td>26,26</td>
</tr>
<tr>
<td>4</td>
<td>155 - 161</td>
<td>2</td>
<td>20,23</td>
<td>34,95</td>
</tr>
<tr>
<td>5</td>
<td>162 - 168</td>
<td>2</td>
<td>15,61</td>
<td>26,96</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
<td>57,88</td>
<td>100</td>
</tr>
</tbody>
</table>

Peta hujan rancangan didapatkan dari nilai hujan rancangan yang kemudian digambarkan menggunakan intepolasi IDW pada ArcGIS. Pemilihan peta hujan rancangan menggunakan kala ulang 25 tahun yang didasarkan pada kriteria desain proyek pengendalian banjir. Berdasarkan Gambar 2, dapat dilihat bahwa seluruh wilayah di DAS Gembong mempunyai rentang curah hujan rancangan antara 100-200 mm. Stasiun hujan di DAS Gembong yang memiliki kecenderungan nilai curah hujan rancangan yang tinggi yaitu Stasiun Oro-oro Pule dan Stasiun P3GI yang mempunyai nilai hujan rancangan pada rentang 162-168 mm.
2. Peta Kemiringan Lereng

![Peta Kemiringan Lereng DAS Gembong](image)

Gambar 3 Peta Kemiringan Lereng DAS Gembong

<table>
<thead>
<tr>
<th>No</th>
<th>Kemiringan (%)</th>
<th>Deskripsi</th>
<th>Nilai</th>
<th>Luas (km²)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 - 8</td>
<td>Datar</td>
<td>5</td>
<td>26,09</td>
<td>45,08</td>
</tr>
<tr>
<td>2</td>
<td>>8 - 15</td>
<td>Landai</td>
<td>4</td>
<td>20,35</td>
<td>35,16</td>
</tr>
<tr>
<td>3</td>
<td>>15 - 25</td>
<td>Agak curam</td>
<td>3</td>
<td>8,29</td>
<td>14,33</td>
</tr>
<tr>
<td>4</td>
<td>>25 - 45</td>
<td>Curam</td>
<td>2</td>
<td>2,80</td>
<td>4,85</td>
</tr>
<tr>
<td>5</td>
<td>>45</td>
<td>Sangat Curam</td>
<td>1</td>
<td>0,34</td>
<td>0,59</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
<td></td>
<td>57,88</td>
<td>100</td>
</tr>
</tbody>
</table>

Peta kemiringan lereng didapatkan dari pengolahan kontur dari data DEM (digital elevation model) selanjutnya dilakukan interpolasi dan pengklasifikasian, hasil klasifikasi dapat dilihat pada Tabel 9. Pada Gambar 3, DAS Gembong cenderung memiliki lereng yang landai hingga datar, dengan dominasi kemiringan lereng 0 - 8% seluas 26,09 km². Kondisi ini meningkatkan potensi terjadinya banjir karena wilayah tersebut rentan tergenang air saat hujan.

3. Peta Jenis Tanah
Peta jenis tanah didapatkan dari pengolahan shapefile jenis tanah Jawa Timur, selanjutnya dilakukan klasifikasi dan hasil klasifikasi dapat dilihat pada Tabel 10. Berdasarkan Gambar 4, jenis tanah DAS Gembong didominasi oleh tanah Mediteran seluas 49,35 km² yang memiliki kepekaan infiltrasi sedang. Sedangkan bagian hulu DAS Gembong termasuk jenis tanah Andosol yang memiliki kepekaan infiltrasi sedang dan bagian hilir DAS Gembong termasuk jenis tanah Alluvial memiliki kepekaan infiltrasi tidak peka yang dimana jenis tanah ini sangat berpotensi terjadi banjir karena sulit menyerap air.

4. Peta Kerapatun Sungai

Gambar 5 Peta Kerapatun Sungai DAS Gembong

Gambar 4 Peta Jenis Tanah DAS Gembong

Tabel 10 Hasil Klasifikasi Jenis Tanah

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Tanah</th>
<th>Infiltrasi</th>
<th>Nilai</th>
<th>Luas (km²)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alluvial</td>
<td>Tidak Peka</td>
<td>5</td>
<td>6,03</td>
<td>10,42</td>
</tr>
<tr>
<td>2</td>
<td>Tanah Mediteran</td>
<td>Kepekaan Sedang</td>
<td>3</td>
<td>49,35</td>
<td>85,26</td>
</tr>
<tr>
<td>3</td>
<td>Andosol</td>
<td>Peka</td>
<td>2</td>
<td>2,50</td>
<td>4,32</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td></td>
<td>57,88</td>
<td>100</td>
</tr>
</tbody>
</table>

Aplikasi Kecepatan pada Air...
Tabel 11 Hasil Klasifikasi Kerapatan Sungai

<table>
<thead>
<tr>
<th>No.</th>
<th>Kerapatan (km/km²)</th>
<th>Klasifikasi</th>
<th>Nilai</th>
<th>Luas (km²)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0,62</td>
<td>Sangat jarang</td>
<td>1</td>
<td>20,72</td>
<td>35,84</td>
</tr>
<tr>
<td>2</td>
<td>0,62 - 1,44</td>
<td>Jarang</td>
<td>2</td>
<td>18,83</td>
<td>32,57</td>
</tr>
<tr>
<td>3</td>
<td>1,45 - 2,27</td>
<td>Sedang</td>
<td>3</td>
<td>11,95</td>
<td>20,67</td>
</tr>
<tr>
<td>4</td>
<td>2,28 - 3,10</td>
<td>Rapat</td>
<td>4</td>
<td>5,53</td>
<td>9,45</td>
</tr>
<tr>
<td>5</td>
<td>>3,10</td>
<td>Sangat rapat</td>
<td>5</td>
<td>0,85</td>
<td>1,47</td>
</tr>
</tbody>
</table>

Jumlah 57,88 100

5. Peta Elevasi

Gambar 6 Peta Elevasi DAS Gembong

Tabel 12 Hasil Klasifikasi Elevasi

<table>
<thead>
<tr>
<th>No.</th>
<th>Elevasi (mdpl)</th>
<th>Nilai</th>
<th>Luas (km²)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><10</td>
<td>5</td>
<td>2,58</td>
<td>4,46</td>
</tr>
<tr>
<td>2</td>
<td>10 - 50</td>
<td>4</td>
<td>28,79</td>
<td>49,74</td>
</tr>
<tr>
<td>3</td>
<td>50 - 100</td>
<td>3</td>
<td>19,78</td>
<td>34,18</td>
</tr>
<tr>
<td>4</td>
<td>100 - 200</td>
<td>2</td>
<td>4,79</td>
<td>8,28</td>
</tr>
<tr>
<td>5</td>
<td>>200</td>
<td>1</td>
<td>1,93</td>
<td>3,34</td>
</tr>
</tbody>
</table>

Jumlah 57,88 100

Peta elevasi didapatkan dari pengolahan kontur data DEM, selanjutnya dilakukan interpolasi dan pengklasifikasian, hasil klasifikasi dapat dilihat pada Tabel 12. Berdasarkan Gambar 6, terlihat bahwa daerah tengah hingga ke hilir DAS Gembong memiliki elevasi yang rendah yaitu <10 mdpl hingga 100 mdpl, sedangkan pada daerah hulu memiliki elevasi 100 hingga...
>200 mdpl. Daerah di bagian tengah hingga hilir DAS Gembong rentan terhadap banjir karena elevasi lahan yang rendah, sehingga mudah mengalami peristiwa banjir.

6. Peta Tutupan Lahan

![Peta Tutupan Lahan](image)

Gambar 7 Peta Tutupan Lahan

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Tutupan Lahan</th>
<th>Nilai</th>
<th>Luas (km²)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pemukiman</td>
<td>5</td>
<td>8,14</td>
<td>14,06</td>
</tr>
<tr>
<td>2</td>
<td>Hutan Mangrove</td>
<td>4</td>
<td>0,09</td>
<td>0,16</td>
</tr>
<tr>
<td>3</td>
<td>Sawah</td>
<td>4</td>
<td>31,10</td>
<td>53,73</td>
</tr>
<tr>
<td>4</td>
<td>Tambak</td>
<td>4</td>
<td>0,07</td>
<td>0,11</td>
</tr>
<tr>
<td>5</td>
<td>Pertanian Lahan Kering</td>
<td>3</td>
<td>15,16</td>
<td>26,20</td>
</tr>
<tr>
<td>6</td>
<td>Hutan</td>
<td>1</td>
<td>0,51</td>
<td>0,87</td>
</tr>
<tr>
<td>7</td>
<td>Hutan Tanaman</td>
<td>1</td>
<td>2,82</td>
<td>4,87</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td>57,88</td>
<td>100</td>
</tr>
</tbody>
</table>

7. Kelas Rawan Banjir

Untuk penentuan total skor kelas rawan banjir dapat dihitung pada ArcGIS dengan mengkalkulkan nilai klasifikasi setiap parameter dengan bobot parameternya berdasarkan Tabel 7 yang kemudian selanjutnya dilakukan overlay pada ArcGIS menggunakan tools Intersection. Setelah melakukan overlay maka dapat menghitung total skor kelas rawan banjir menggunakan rumus berikut:

\[
TS = (\text{kemiringan lahan} \times 0,2) + (\text{ketinggian lahan} \times 0,1) + (\text{jenis tanah} \times 0,2) + (\text{curah hujan} \times 0,2) + (\text{tutupan lahan} \times 0,2) + (\text{kerapatan sungai} \times 0,1)
\]
Setelah mendapatkan hasil total skor kelas rawan banjir, maka selanjutnya dapat menentukan interval dari setiap kelas rawan banjir. Untuk perhitungan interval kelas rawan banjir pada DAS Gembong digunakan 5 kelas rawan yaitu (Sangat Rendah, Rendah, Sedang, Tinggi, dan Sangat Tinggi), kemudian untuk perhitungannya dapat menggunakan rumus aritmatik berikut (Aziza et al., 2021):

\[I = \frac{R}{K} \]

dengan \(I \) = lebar interval, \(R \) = rentang beda nilai data tertinggi dikurangi data terendah, \(K \) = jumlah interval kelas yang ditentukan.

Diketahui dari hasil overlay didapatkan nilai maksimum (Smax) skor rawan banjir yaitu 4,05 dan untuk nilai minimum (Smin) skor rawan banjir yaitu 1,45.

\[I = \frac{R}{K} = \frac{(4.05-1.45)}{5} = 0.52 \]

Sehingga didapatkan nilai kelas rawan banjir pada lokasi penelitian yaitu sebagai berikut:

- Sangat Rendah = 1,45 – 1,97
- Rendah = 1,98 – 2,49
- Sedang = 2,50 – 3,01
- Tinggi = 3,02 – 3,53
- Sangat Tinggi = 3,54 – 4,05

8. Peta Rawan Banjir

Gambar 8 Peta Rawan Banjir DAS Gembong
Gambar 9 Luasan Tingkat Rawan Banjir

Tabel 14 Luas Tingkat Kerawanan Banjir Setiap Kecamatan

<table>
<thead>
<tr>
<th>Kabupaten /Kota</th>
<th>Kecamatan</th>
<th>Luas Area Rawan Banjir (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sangat Rendah</td>
<td>Rendah</td>
</tr>
<tr>
<td>Kota Pasuruan</td>
<td>Panggungrejo</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Purworejo</td>
<td>-</td>
</tr>
<tr>
<td>Kabupaten Pasuruan</td>
<td>Gondangwetan</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Kejayan</td>
<td>0,906</td>
</tr>
<tr>
<td></td>
<td>Pohjentrek</td>
<td>-</td>
</tr>
</tbody>
</table>

Febriani, Badriani, dan Kartini | 81
Kabupaten

<table>
<thead>
<tr>
<th>Luas Area Rawan Banjir (km2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Kraton</td>
</tr>
<tr>
<td>Pasrepan</td>
</tr>
</tbody>
</table>

Seperti yang sudah disajikan pada Gambar 9, dapat dilihat hasil pemetaan daerah rawan banjir di lokasi penelitian dibagi menjadi 5 tingkat rawan banjir. Tingkat rawan banjir yang paling besar yaitu tingkat Sedang dengan luasan sebesar 24,10 km2 atau 41,63% dari total luas DAS. Kemudian pada Tabel 14 diketahui bahwa kecamatan-kecamatan di Kota Pasuruan memiliki tingkat rawan banjir yang Sangat Tinggi. Kecamatan Purworejo memiliki tingkat rawan banjir Sangat Tinggi yang paling luas dibandingkan kecamatan-kecamatan lain yaitu seluas 2,271 km2.

Validasi

Dalam penelitian ini, data yang telah diambil menunjukkan bahwa sebanyak 16 titik atau 89% dari kejadian banjir masa lalu terjadi pada tingkat kerawanan banjir yang sangat tinggi, sedangkan 2 titik atau 11% terjadi pada tingkat kerawanan banjir tinggi. Hasil analisis spasial ini dapat digunakan untuk memetakan tingkat rawan banjir di lokasi penelitian, yang akan membantu dalam menentukan upaya mitigasi banjir struktural maupun non-struktural (Kuswardhiana et al., 2023).

Gambar 10 Peta Rawan Banjir dan Titik-titik Banjir
Mitigasi Struktural

1) Embung Kecil
Penempatan Embung Kecil didasarkan pada ketersediaan lahan dan daerah tingkat rawan banjir sangat tinggi dan tinggi. Untuk koordinat penempatan lokasi embung kecil yang lain dapat dilihat pada Tabel 15.

<table>
<thead>
<tr>
<th>Embung Kecil</th>
<th>Koordinat</th>
<th>Luas DAS (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Embung Kecil 1</td>
<td>112.81857</td>
<td>-7.74251</td>
</tr>
<tr>
<td>Embung Kecil 2</td>
<td>112.85221</td>
<td>-7.71082</td>
</tr>
<tr>
<td>Embung Kecil 3</td>
<td>112.84911</td>
<td>-7.74208</td>
</tr>
<tr>
<td>Embung Kecil 4</td>
<td>112.86013</td>
<td>-7.72444</td>
</tr>
<tr>
<td>Embung Kecil 5</td>
<td>112.83281</td>
<td>-7.72606</td>
</tr>
</tbody>
</table>

Berikut hasil rekapitulasi perhitungan tumpangan serta volume yang dapat direduksi oleh embung kecil yang ada pada lokasi penelitian:

<table>
<thead>
<tr>
<th>Jenis Bangunan</th>
<th>Panjang (m)</th>
<th>Lebar (m)</th>
<th>Kedalaman (m)</th>
<th>Vol. Tampungan (m³)</th>
<th>Vol. debit puncak (m³)</th>
<th>Reduksi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embung Kecil 1</td>
<td>40</td>
<td>25</td>
<td>3</td>
<td>3000</td>
<td>47032</td>
<td>6,38</td>
</tr>
<tr>
<td>Embung Kecil 2</td>
<td>40</td>
<td>25</td>
<td>3</td>
<td>3000</td>
<td>125121</td>
<td>2,40</td>
</tr>
<tr>
<td>Embung Kecil 3</td>
<td>40</td>
<td>25</td>
<td>3</td>
<td>3000</td>
<td>52626</td>
<td>5,70</td>
</tr>
<tr>
<td>Embung Kecil 4</td>
<td>40</td>
<td>25</td>
<td>3</td>
<td>3000</td>
<td>56950</td>
<td>5,27</td>
</tr>
<tr>
<td>Embung Kecil 5</td>
<td>40</td>
<td>25</td>
<td>3</td>
<td>3000</td>
<td>38150</td>
<td>7,86</td>
</tr>
</tbody>
</table>

2) Kolam Retensi
Penempatan Retensi didasarkan pada ketersediaan lahan, daerah tingkat rawan banjir sangat tinggi dan tinggi, kontur dan elevasi dasar sungai. Untuk koordinat penempatan lokasi kolam retensi yang lain dapat dilihat pada Tabel 17.
Tabel 17 Koordinat Lokasi Kolam Retensi

<table>
<thead>
<tr>
<th>Kolam Retensi</th>
<th>Koordinat X</th>
<th>Koordinat Y</th>
<th>Luas DTA (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolam Retensi 1</td>
<td>112,90511</td>
<td>-7,65369</td>
<td>0.29</td>
</tr>
<tr>
<td>Kolam Retensi 2</td>
<td>112,89619</td>
<td>-7,66426</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Berikut hasil rekapitulasi perhitungan tampungan serta volume yang dapat direduksi oleh kolam retensi yang ada pada lokasi penelitian:

Tabel 18 Rekapitulasi Tampungan dan Volume Reduksi Kolam Retensi

<table>
<thead>
<tr>
<th>Jenis Bangunan</th>
<th>Panjang (m)</th>
<th>Lebar (m)</th>
<th>Kedalaman (m)</th>
<th>Vol. Tampungan (m³)</th>
<th>Vol. saat debit puncak (m³)</th>
<th>Reduksi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retensi 1</td>
<td>60</td>
<td>45</td>
<td>3</td>
<td>8100</td>
<td>21664</td>
<td>37.39</td>
</tr>
<tr>
<td>Retensi 2</td>
<td>50</td>
<td>45</td>
<td>3</td>
<td>6750</td>
<td>17182</td>
<td>39.29</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 18, ketentuan volume tampungan didapatkan dari hasil penentuan dimensi yang ditinjau dari ketersediaan lahan. Kemudian, untuk volume debit puncak didapatkan dari perhitungan debit banjir metode rasional, yang selanjutnya dilakukan perhitungan reduksi membandingkan nilai volume tampungan dengan volume saat debit puncak banjir.

Mitigasi Non-struktural

Berikut merupakan komponen alat-alat sistem peringatan dini yang digunakan beserta dengan penempatan lokasinya (Badan Standardisasi Nasional, 2022):

1. Sensor penakar curah hujan ditempatkan pada pos hujan di DAS Gembong yaitu, Stasiun Oro-oru Pule, Stasiun P3GI, Wonorejo, dan Selowongko. Untuk rekomendasi alat sensor penakar curah hujan bisa menggunakan Atmos 41W.
2. Sensor pengukuran tinggi muka air sungai ditempatkan pada pos duga air (AWLR) Warungdowo. Untuk rekomendasi alat sensor penakar curah hujan bisa menggunakan Hobo MicroRX Water Level Station.
3. Sirine dan lampu rotary ditempatkan pada daerah pemukiman penduduk yang dekat dengan sungai dan memiliki kerawanan banjir yang sangat rawan.

Kemudian, untuk menentukan tingkatan status banjir didasarkan pada SNI 8840-3-2022 “Sistem Peringatan Dini Bencana – Bagian 3: Banjir”. Berikut merupakan tingkatan status banjir beserta deskripsi atau tindanya:

Tabel 19 Tingkatan Status Rawan Banjir

<table>
<thead>
<tr>
<th>Tingkat Status Banjir</th>
<th>Deskripsi atau Tanda</th>
<th>Tindakan</th>
</tr>
</thead>
</table>
| Normal (Hijau) | - Hujan sangat ringan hingga ringan (gerimis).
 - Beda tinggi tunggal dengan TMA > 1,5 m. | - Pendataan anggota keluarga dan kelompok rentan
 - Koordinasi rutin Tim Siaga Bencana dengan mempersiapkan |

84 | Aplikasi Koagulasi pada Air...
<table>
<thead>
<tr>
<th>Tingkat Status Banjir</th>
<th>Deskripsi atau Tanda</th>
<th>Tindakan</th>
</tr>
</thead>
</table>
| **Waspada (Kuning)** | Debit air sungai belum meningkat secara mencolok.
| | Tidak ada genangan air.
| | Air masih teralirkan ke dalam saluran drainase.
| | Ketinggian muka air di sungai dalam keadaan normal. | tim siaga dan pembagian tugas saat terjadi bencana.
| | Sosialisasi informasi bahaya banjir dan tahapan evakuasi bencana |
| **Siaga (Oranye)** | Hujan sedang.
| | Beda tinggi tuang dengan TMA (1.25 – 1.5 m).
| | Debit air sungai meningkat namun tidak mencolok.
| | Terjadi genangan air di lokasi-lokasi tertentu namun belum dalam kondisi kritis.
| | Saluran drainase penuh namun belum meluap. | (Menerima tanda bahaya sirine dari alat penalar curah hujan)
| | Melakukan pendataan langsung ke rumah warga
| | Mengecek persiapan logistik dan P3K.
| | Menyampaikan informasi perkembangan status, jujur evakuasi, dan titik kumpul melalui pengerjaan suara di lingkungan tersebut. |
| **Awas (Merah)** | Hujan lebat.
| | Beda tinggi tuang dengan TMA (0,75 sampai dengan 1,25 m).
| | Wilayah genangan air mulai meluas.
| | Saluran drainase mulai meluap.
| | Debit air sungai meningkat cukup mencolok. | (Menerima tanda bahaya sirine dan alat pemantau muka air)
| | Persiapan evakuasi warga dengan mengevakuasi kelompok rentan (anak-anak, ibu hamil, lansia, dan difabel) ke tempat yang aman.
| | Persiapan logistik dan P3K. |

Mitigasi non-struktural yang dapat dilakukan selain menekan sistem peringatan dini, yaitu dapat melakukan penataan ruang dengan menghindari pembangunan di daerah rawan banjir dan mengembangkan ruang terbuka hijau yang dapat menyerap air hujan. Selain itu, implementasi kebijakan dan regulasi yang tegas dalam pengelolaan sumber daya air dan penggunaan lahan sangat diperlukan untuk memastikan bahwa upaya mitigasi berjalan.
sesuai dengan rencana. Oleh sebab itu, kerjasama antar berbagai pihak, termasuk pemerintah, masyarakat, dan organisasi non-pemerintah, sangat penting dalam mengimplementasikan mitigasi non-struktural.

KESIMPULAN

Berdasarkan hasil pembahasan dan analisis data perhitungan sebelumnya, diperoleh pemetaan daerah rawan banjir di DAS Gembong, diperoleh 5 tingkat rawan yang berbeda yaitu tingkat rawan sangat tinggi dengan luas 4,26 km² (7,36%), tingkat rawan tinggi dengan luas 22,96 km² (39,66%), tingkat rawan sedang dengan luas 24,10 km² (41,63%), tingkat rawan rendah dengan luas 107 km² (8,76%), dan tingkat rawan sangat rendah dengan luas 1,50 km² (2,59%). Dari hasil analisis diketahui bahwa Kecamatan Purworejo memiliki tingkat rawan banjir sangat tinggi yang paling luas dibandingkan kecamatan-kecamatan lain yaitu seluas 2,271 km².

Dalam upaya mitigasi struktural direncanakan 5 embung kecil dengan masing-masing volume tampungan sebesar 3000 m³ dan memiliki reduksi volume 2,40% - 7,86%. Selain itu, direncanakan 2 kolam retensi dengan masing-masing volume tampungan sebesar 8100 m³ dan 6750 m³ dan juga memiliki reduksi volume 37,39% - 39,29%. Kemudian, dalam mitigasi non-struktural dengan sistem peringatan dini, diperoleh tingkat status banjir yang dibedakan menjadi 4, yaitu tingkat status Normal, Waspada, Siaga, dan Awas. Selain itu, mitigasi non-struktural dapat dilakukan dengan penataan ruang kembali serta menjalankan secara tegas kebijakan dan regulasi dalam hal pengelolaan sumber daya air dan penggunaan lahan.

DAFTAR PUSTAKA

ORIGINALITY REPORT

<table>
<thead>
<tr>
<th>#</th>
<th>Source</th>
<th>Originality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submitted to Universitas Muhammadiyah Gresik</td>
<td>4%</td>
</tr>
<tr>
<td>2</td>
<td>123dok.com</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>digilib.unila.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>digilib.uns.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>journal.uny.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>jurnal.unej.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>publikasiilmiah.ums.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>repository.ummat.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>9</td>
<td>Submitted to Institut Teknologi Kalimantan</td>
<td>1%</td>
</tr>
</tbody>
</table>

SIMILARITY INDEX: 22%
INTERNET SOURCES: 21%
PUBLICATIONS: 10%
STUDENT PAPERS: 11%

Tika Mahardhika Putri, Iswanto Iswanto, Adib Suyanto. "Pemanfaatan Sampah Sekam Padi dan Bungkus Rokok Sebagai Bahan Daur"
Ulang Kertas", Sanitasi: Jurnal Kesehatan Lingkungan, 2020

20. jurnal.untan.ac.id
 Internet Source

21. lppm.undiksha.ac.id
 Internet Source

24. ejurnal.its.ac.id
 Internet Source

25. Deamasari Dwi Rusdiana, Ramadhanti Nuryandini, Juniarti Heni Imelia, Nuraini Syifa

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Source Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>openjournal.unpam.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>27</td>
<td>pesta(bsn.go.id)</td>
<td><1%</td>
</tr>
<tr>
<td>28</td>
<td>repository.its.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>29</td>
<td>repository.upp.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>30</td>
<td>talentaconfseries.usu.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>31</td>
<td>garuda.kemdikbud.go.id</td>
<td><1%</td>
</tr>
<tr>
<td>32</td>
<td>eproceeding.itenas.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>33</td>
<td>library.universitaspertamina.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>34</td>
<td>pdfcoffee.com</td>
<td><1%</td>
</tr>
<tr>
<td>Number</td>
<td>Reference</td>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>37</td>
<td>ejournal.undiksha.ac.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>38</td>
<td>iptek.its.ac.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>39</td>
<td>jurnal.ilmubersama.com</td>
<td>Internet Source</td>
</tr>
<tr>
<td>40</td>
<td>www.liputan6.com</td>
<td>Internet Source</td>
</tr>
<tr>
<td>41</td>
<td>Kurnia Yunita Sari, Triyatno Triyatno. "Analisis Bencana Banjir Menggunakan Data SAR (Synthetic Aperture Radar) Sentinel 1 di Kecamatan Sungai Serut Kota Bengkulu", MASALIQ, 2024</td>
<td>Publication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Source URL</th>
<th>Internet Source</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>digilib.uinsgd.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>43</td>
<td>ejournal.itn.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>44</td>
<td>ejurnalunsam.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>45</td>
<td>jim.unsyiah.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>46</td>
<td>journal.unnes.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>47</td>
<td>pt.scribd.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>48</td>
<td>repository.radenintan.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>49</td>
<td>repository.ub.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>50</td>
<td>text-id.123dok.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>Feature</td>
<td>Setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude quotes</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude bibliography</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude matches</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>