OPTIMALISASI PEMANFAATAN MATA AIR JAGASATRU UNTUK LAYANAN SISTEM PENYEDIAAN AIR MINUM (SPAM) DI DESA MANGGIS

by Try H Pamungkas
OPTIMALISASI PEMANFAATAN MATA AIR JAGASATRU UNTUK LAYANAN SISTEM PENYEDIAAN AIR MINUM (SPAM) DI DESA MANGGIS

Optimization of the utilization of the Jagasatu Spring for Drinking Water Supply System (SPAM) services in Manggis Village

Tri Hayatining Pamungkas 8, I Ketut Soriata 8, I Wayan Astu Wiratmata 8, Ni Kadek Astariani 8

ABSTRAK

Kata kunci: sistem penyediaan air minum, optimisasi, mata air, sistem perpipaan, Epanet

ABSTRACT

Manggis Village has a drinking water supply system that utilizes the Jagasatu spring. In its utilization, the Jagasatu spring only serves two hamlets, namely Belong and Yehpoh Hamlets. In contrast, the Jagasatu spring discharge, which is 10 liters per second, has the potential to be able to serve the entire Manggis Village, which has 12 Hamlets. Jagasatu spring, if used, is very profitable because it has an elevation of 169 meters above sea level. Based on these conditions, research was conducted to optimize the utilization of Jagasatu Springs. Analysis methods are carried out to determine which hamlets can be planned for gravity systems, network systems and the costs required. The analysis projected population growth and water demand for up to 10 years. The results of the topographic survey of hamlets can be reached by as many as ten hamlets, except Bakung and Pegubagan hamlets, because the elevation is higher than the spring source. Network analysis of piping systems using the Epanet 2.2 modeling method produces pipe dimensions, pipe specifications, and network schematics that are eligible for the operation. Referring to the piping system network analysis results, a Bill of Quantity for the implementation of the project amounted to Rp. 1.529.239.000.

Keywords: drinking water supply system, optimisation, springs, piping system, Epanet
PENDAHULUAN

 Salah satu mata air dengan potensi yang bisa digunakan adalah mata air Jagasatu. Debit mata air Jagasatu sebesar 10 liter/detik sesuai dengan buku RKM DAK Pokmas Desa Manggis yang diharapkan mampu melayani kekurangan akses dan layanan air minum di Desa Manggis. Elevasi lokasi sumber mata air Jagasatu yang terletak pada titik yang lebih tinggi daripada reservoir dan daerah pelayan di Desa Manggis maka dapat direncanakan jaringan transmisinya dengan sistem gravitasi. Sistem gravitasi memiliki keuntungan dalam oprasional SPAM karena energi tekanan yang dimanfaatkan berasal dari elevasi sumber air tinggi. Karena dalam proses pemanfaatan biaya untuk operasional dapat ditekan sehingga hasil dari pelayanan dapat digunakan untuk membantu dibidang sosial dan kemanusiaan. Menurut ketua Pokmas Desa Manggis keuntungan dari pengelolaan air oleh PAM desa sudah dapat membantu masyarakat yang kurang mampu untuk membayar asuransi kesehatan, tunjangan tokoh adat dan bantuan untuk upacara adat di Desa Manggis.

Berdasarkan latar belakang dan metode pelaksanaan yang sudah berhasil pada penelitian sebelumnya serta belum adanya penelitian yang dilakukan pada daerah penelitian, maka diperlukan analisis perencanaan ulang sistem penyediaan air minum di Desa Manggis dengan memanfaatkan secara optimal sumber mata air Jagasatu bertujuan dapat
mengetahui jaringan layanan SPAM dengan sistem gravitasi untuk dapat melayani kebutuhan air di Desa Manggis seiring pertumbuhan penduduk yang meningkat.

METODOLOGI

21 Metode Penelitian

Metode penelitian yang dipakai di kajian ini adalah metode penelitian deskriptif kuantitatif dengan menggunakan survei, observasi, atau wawancara. Metode deskriptif didasarkan pada data yang diperoleh dari lokasi studi yang memerlukan pengoptimalan pemanfaatan mata air Jagasatru untuk pelayanan penyediaan air minum di Desa Manggis yang dilanjutkan dengan analisis pencatatan ulang pemanfaatan mata air Jagasatru menggunakan program Epanet 2.2.

Lokasi Penelitian

Sumber Data

Data yang diperlukan untuk perencanaan ini adalah data primer dan data sekunder.

Data Primer

Data primer adalah data yang didapat langsung melalui survei lapangan. Data primer yang diperlukan adalah topografi wilayah.

1. Survei

Survei dilakukan untuk memperoleh data primer. Survei yang dilakukan sesuai dengan target data yang ditetapkan atau dibutuhkan dalam bagian analisis. Adapun survei yang dilakukan adalah:

1) Survei Topografi

Survei ini dilakukan dengan mengambil titik koordinat sumber mata air, posisi reservoir dan posisi permukiman dengan menggunakan GPS yang dimana pada penelitian ini menggunakan aplikasi berbasis Android yaitu Altimeter yang kemudian diolah dengan bantuan software Google Earth.

Data Sekunder

Data Sekunder merupakan data yang didapatkan dan dikumpulkan dari instansi atau institusi terkait dimana datanya valid dan bisa dipertanggungjawabkan. Data sekunder yang dibutuhkan dalam penelitian ini antara lain:

1. Peta Desa Manggis
2. Peta jaringan perpipaan.
3. Debit sumber mata air yaitu 10 liter/detik
4. Data Jumlah Penduduk
5. Data Jumlah Sekolah Dasar dan Taman Kanak-kanak
Sumber Air Baku

Asal air biasanya dari sumber air permukaan, air tanah, air hujan, dan laut yang kemudian disebut Air Baku apabila air tersebut dapat memenuhi standar mutu tertentu sebagai Air Baku untuk Air Minum (Menteri Pekerja Umum, 2007). Contoh-contoh sumber air baku yang diperuntukkan air minum yaitu air sungai, air danau, mata air dan lain sebagainya. Pada penelitian ini yang dimanfaatkan berupa air permukaan yaitu air sungai. Untuk memanfaatkan aliran air sungai, harus melakukan pengolahan air baku terlebih dahulu supaya air tersebut memenuhi standar air minum.

Langkah-Langkah Analisis Data

Metode analisis data dapat dilakukan dengan tahapan menganalisis data yang didapatkan. Setelah data primer dan data sekunder didapatkan, selanjutnya diperoleh hasil yang diperlukan dalam perencanaan ini. Kumpulan data yang sudah disiapkan kemudian dianalisis sesuai tahapan yang telah ditetapkan serta digunakan untuk acuan pada analisis berikutnya. Analisis data yang akan dikerjakan bersumber dari data primer ataupun data sekunder. Dari data yang diperoleh seperti di atas maka akan dilakukan analisis sesuai dengan kebutuhan penelitian. Adapun analisis data yaitu:

Analisis Proyeksi Pertumbuhan Penduduk

Agar jumlah tingkat kepadatan, dan pertumbuhan penduduk Desa Manggis diketahui maka perlu dilakukan analisis pertumbuhan penduduk. Analisis pertumbuhan penduduk juga diperlukan untuk menentukan metode yang akan digunakan untuk menghitung proyeksi jumlah penduduk di masa depan. Berdasarkan data yang dimiliki yaitu presentase pertumbuhan penduduk yang konstan setiap tahunnya maka analisis proyeksi penduduk dapat dilakukan dengan Metode Aritmatika yang artinya tidak terjadi pertambahan maupun pengurangan secara ekstrim pada jumlah penduduk (Hartati, 2021).

Hal pertama yang dilakukan dalam menghitung proyeksi kebutuhan air bersih adalah menganalisis proyeksi pertumbuhan penduduk pada suatu daerah perencanaan. Untuk menghitung proyeksi pertumbuhan penduduk ada beberapa elemen data yaitu harus ditentukan yang akan mempengaruhi ketelitian proyeksi jumlah penduduk yaitu kecepatan pertumbuhan penduduk, panjang waktu proyeksi, dan jumlah tahun pengambilan data (Widyaswara & Frianto, 2019). Proyeksi jumlah penduduk bisa dihitung menggunakan metode yang telah diketahui publik yaitu metode aritmatika (Hartati, 2021). Alasan memilih metode ini karena presentase pertumbuhan penduduk sudah diketahui sebesar 2,1 % melalui BPS dan pertumbuhan penduduk yang memiliki pertumbuhan konstan dihitung menggunakan metode Aritmatika.

\[P_n = P_0 \cdot (1+r)^t \]

Dengan \(P_n = \) Populasi tahun akhir, \(P_0 = 368, r = 2,10 \% \) laju pertumbuhan penduduk desa manggis (BPS Kabupaten Karangasem, 2020), \(t = 10 \) tahun.

Untuk presentase pertumbuhan penduduk di Desa Manggis sesuai data dari BPS dianggap konstan setiap tahunnya yaitu 2,1 % sehingga metode untuk menghitungnya adalah menggunakan metode Aritmatika (Hartati, 2021).
Analisis Proyeksi Kebutuhan Air

Banyaknya air yang dibutuhkan untuk keperluan harian manusia adalah jumlah kebutuhan air bersih. Semua kegiatan lainnya yang membutuhkan air seperti kegiatan sosial, kantor, niaga, pendidikan, fasilitas peribadahan dan lainnya disebut kebutuhan air (non domestik) (Udj, 2014). Air domestik yang dibutuhkan per orang per hari direncanakan sesuai dengan standar yang dapat dipakai sesuai ketentuan pelayanan yang bersumber pada wilayah dan jumlah jiwa di wilayah tersebut.

Kebutuhan air yang digunakan untuk kegiatan harian atau pementukan kebutuhan air rumah tangga disebut kebutuhan air domestik (Ramadhayanti & Helda, 2021). Yang termasuk kebutuhan air domestik adalah penggunaan air oleh seseorang yang diperkirakan tetap setiap harinya seperti mandi dan memasak. Untuk menentukan kebutuhan air domestik bisa ditentukan dengan mengetahui kecenderungan peningkatan kebutuhan air itu sendiri yang dianalisis melalui data penduduk, pola kebiasaan serta tingkat hidup yang didukung adanya perkembangan sosial ekonomi (Mamik, 2017). Kriteria perencanaan air perorangan sangat dipengaruhi jumlah penduduk suatu kota sesuai dengan kriteria perencanaan yang telah disusun dan ditetapkan oleh Direktorat Jendral PUPR (Menteri Pekerjaan Umum, 2007; Pemerintah Republik Indonesia, 2015).

Kebutuhan air non-domestik adalah kebutuhan air yang digunakan oleh masyarakat umum yang konsumsinya tidak tetap setiap harinya, yang kemudian sering disebut kebutuhan air perkotaan. Jumlah fasilitas perkantoran yang ada dalam wilayah perencanaan, pendidikan (institut dan sekolah), tempat ibadah masyarakat, tempat-tempat komersial seperti pertokoan, hotel, rumah makan, pasar umum, dan perindustrian dalam wilayah tersebut (Salam, 2019).

Perhitungan kebutuhan air mengacu pada SNI 03-7065-2005, Atribila memakai standar pada SNI ditentukan sesuai kualifikasi wilayah yaitu desa maka pemakaian air rata-rata orang per hari yaitu sebesar 60 liter/orang/hari dan fasilitas umum per orang sebesar 5 liter/orang/hari (Badan Standardisasi Nasional, 2005).

Selanjutnya jumlah kebutuhan air domestik ditambah kebutuhan air non-domestik serta ditambah kehilangan air akan menghasilkan jumlah kebutuhan air total. Hasil dari analisis kebutuhan air total bertujuan dapat ditentukannya debit yang dibutuhkan dalam sistem jaringan sesuai dengan konsumen yang telah dianalisis (Burako, 2018; Kalensun et al., 2016).

Rumus kebutuhan air total tertera pada rumus (2).

\[Q_r = Q_d + Q_n + Q_a \]

(2)

dengan: \(Q_r \) = Kebutuhan air rata - rata (liter/hari), \(Q_d \) = Pemakaian air domestik (liter/hari), \(Q_n \) = Pemakaian air non - domestik (liter/hari), \(Q_a \) = Kehilangan air (liter/hari)

Analisis Hidrolis menggunakan Epanet 2.2

Program komputer yang menggambarkan simulasi hidrolis dan kecenderungan kualitas air yang melekat di dalam jaringan pipa adalah definisi dari Aplikasi Epanet. Elemen jaringan terdiri dari pipa, node (titik koneksi pipa), pompa, katub, dan tangki air atau reservoir (Guo et al., 2021; Sastos, 2020). Semua elemen yang terdiri dari jaringan harus memiliki data sesuai dengan dilapangan.
Pengoperasian Epanet 2 yang menghasilkan skema hidrolika aliran pipa dipengaruhi beberapa factor yaitu tekanan air pada pipa, kecepatan aliran air, debit yang dibutuhkan dan kehilangan air (Waterloss) (Guo et al., 2021; Primejdie et al., 2021). Analisis hidrolika jaringan perpipaan menggunakan aplikasi pemodelan jaringan pipa yaitu Epanet 2.2. Perangkat lunak ini dapat membantu untuk mengubah data yang diimput setelah melakukan survey topografi menjadi simulasi aliran hidrolika pada pipa dalam format yang diinginkan. Hasil analisis yaitu aliran dan headloss pada sambungan (pipa, pompa, dan katup), head, tekanan dan kebutuhan air pada junctions, serta level dan volume untuk penyimpanan air (Todini et al., 2022). Semua perhitungan ini kita akan sandingkan dengan angka yang berlaku untuk sistem penyediaan air minum sehingga nanti kita dapat menyimpulkan apakah sistem tersebut memenuhi standar atau tidak (Pemerintah Republik Indonesia, 2015). Adapun metode yang akan digunakan, seperti: Hazen-William, Darcy-Weisbach dan Chessey-Manning, beserta satuan yang digunakan dapat disesuaikan dengan kondisi di wilayah perencanaan dan kebutuhan angka yang ingin diperoleh (Mokunimau et al., 2021).

Analisis Rencana Anggaran Biaya

SNI T: 4-2002 memuat tentang Tata Cara Perhitungan Harga Satuan Pekerjaan Pipa dan Saniter dengan penentuan besaran nilai koefisien disesuaikan dengan metode pelaksanaan yang akan diterapkan dalam pendistribusian air bersih menggunakan pipa (Badan Standarisasi Nasional, 2002). Rencana Anggaran Biaya (RAB) harus mengacu pada SNI diatas yang menjadi salah satu proses utama dalam suatu proyek karena merupakan dasar untuk membuat penawaran sistem pembiayaan dan kerangka budget yang akan dikeluarkan. Dalam RAB terdapat harga satuan pokok kegiatan yang harga untuk setiap pekerjaan yang terdiri dari beberapa komponen dengan nilai koefisien yang berdasarkan Standar Nasional Indonesia.

HASIL DAN PEMBAHASAN

Analisis Wilayah Perencanaan

Analisis wilayah perencanaan berdasar pada data yang didapat dari survei lapangan. Adapun survei lapangan yang dilakukan pada perencanaan ini berupa analisis jalur rencana perpipaan, yang disebut juga tracking. Hasil dari analisis wilayah perencanaan dijelaskan pada Tabel 1.

<table>
<thead>
<tr>
<th>NO</th>
<th>NAMA DUSUN</th>
<th>ELEVTASI TERTINGGI</th>
<th>MEMENUHI SYARAT YA</th>
<th>TIDAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEGURUGAN</td>
<td>289</td>
<td>Tidak</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BAKUNG</td>
<td>170</td>
<td>Tidak</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SIIG</td>
<td>110</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PANDE</td>
<td>59</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TENGAH</td>
<td>47</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>KAWAN</td>
<td>35</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>KELODAN</td>
<td>39</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BUTAN</td>
<td>20</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>APITYEH KAJA</td>
<td>52</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>APITYEH KELOD</td>
<td>42</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BELONG</td>
<td>38</td>
<td>Ya</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>YEHPOH</td>
<td>95</td>
<td>Ya</td>
<td></td>
</tr>
</tbody>
</table>
Wilayah perencanaan sesuai dengan syarat perencanaan daerah pelayanan dengan sistem gravitasi harus memiliki elevasi lebih rendah dari elevasi sumber mata air (Utama & Ariyadi, 2022) yaitu 169 m diatas permukaan laut. Berdasarkan Tabel 1 terdapat 10 dusun yang sesuai dengan persyaratan sistem gravitasi sedangkan 2 dusun lainnya yaitu Dusun Pegubugan dan Dusun Bakung tidak masuk dalam persyaratan wilayah perencanaan.

Analisis Proyeksi Pertumbuhan Penduduk

Analisis Proyeksi Penduduk

Analisis proyeksi penduduk dihitung menggunakan metode aritmatika. Metode ini dianggap baik untuk kurun waktu yang pendek sama dengan kurun waktu perolehan data (Siswanto et al., 2022). Perhitungan menggunakan persamaan 1, pada Dusun Siig, yaitu:
\[P_n = 368 \times (1+2.10\% \times 10) \]
\[P_n = 445.28 \]

Hasil analisis didapat jumlah penduduk pada Dusun Siig 10 tahun mendatang adalah 445 jiwa. Berdasarkan alur analisis yang sama, untuk proyeksi penduduk pada dusun lain dijelaskan pada Tabel 2.

<table>
<thead>
<tr>
<th>NO</th>
<th>NAMA</th>
<th>Pertumbuhan Penduduk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2023</td>
</tr>
<tr>
<td>1</td>
<td>SIIG</td>
<td>372</td>
</tr>
<tr>
<td>2</td>
<td>PANDE</td>
<td>426</td>
</tr>
<tr>
<td>3</td>
<td>BELONG</td>
<td>637</td>
</tr>
<tr>
<td>4</td>
<td>TENGAH</td>
<td>464</td>
</tr>
<tr>
<td>5</td>
<td>KAWAN</td>
<td>779</td>
</tr>
<tr>
<td>6</td>
<td>KELODAN</td>
<td>1150</td>
</tr>
<tr>
<td>7</td>
<td>YEPOH</td>
<td>996</td>
</tr>
<tr>
<td>8</td>
<td>APITEH KAI</td>
<td>408</td>
</tr>
<tr>
<td>9</td>
<td>APITEH KELO</td>
<td>441</td>
</tr>
<tr>
<td>10</td>
<td>BUITAN</td>
<td>611</td>
</tr>
</tbody>
</table>

Analisis kependudukan dilakukan pada 10 dusun perencanaan berupa survei jumlah sambungan rumah (SR) yang diproyeksi selama 10 tahun ke depan. Selanjutnya, analisis ini akan menjadi dasar perhitungan pada analisis proyeksi kebutuhan air.

Analisis Proyeksi Kebutuhan Air

Tabel 3 Kebutuhan air rata-rata

<table>
<thead>
<tr>
<th>NO</th>
<th>NAMA</th>
<th>Jumlah</th>
<th>kebutuhan 20%</th>
<th>Kebutuhan Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non-Domestik</td>
<td>Domestik</td>
<td>liter per hari</td>
</tr>
<tr>
<td>1</td>
<td>SIRG</td>
<td>26.760</td>
<td>5.340</td>
<td>32.040</td>
</tr>
<tr>
<td>2</td>
<td>PANDE</td>
<td>30.480</td>
<td>6.096</td>
<td>36.576</td>
</tr>
<tr>
<td>3</td>
<td>BELONG</td>
<td>45.720</td>
<td>9.144</td>
<td>54.864</td>
</tr>
<tr>
<td>4</td>
<td>TENGAH</td>
<td>33.300</td>
<td>6.600</td>
<td>40.685</td>
</tr>
<tr>
<td>5</td>
<td>KAWAN</td>
<td>55.800</td>
<td>11.160</td>
<td>67.545</td>
</tr>
<tr>
<td>6</td>
<td>KELODAN</td>
<td>82.500</td>
<td>16.500</td>
<td>99.000</td>
</tr>
<tr>
<td>7</td>
<td>YEHPOR</td>
<td>71.340</td>
<td>14.268</td>
<td>86.383</td>
</tr>
<tr>
<td>8</td>
<td>APITYEH</td>
<td>29.160</td>
<td>5.832</td>
<td>35.327</td>
</tr>
<tr>
<td>9</td>
<td>KAJA</td>
<td>31.560</td>
<td>6.312</td>
<td>37.872</td>
</tr>
<tr>
<td>10</td>
<td>BUITAN</td>
<td>43.860</td>
<td>8.772</td>
<td>52.632</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>450.420</td>
<td>90.084</td>
<td>542.904</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 3 dapat diketahui kebutuhan air yang paling tinggi adalah pada Dusun Kelodan dan yang paling kecil pada Dusun SIRG. Hal ini tentu membuktikan bahwa banyaknya penduduk berbanding lurus dengan banyaknya kebutuhan air (Fadila et al., 2022) di wilayah Dusun Desa Manggis.

Analisis Jaringan Pipa

Analisis jaringan pipa dilakukan untuk mendapatkan beberapa data yang diperlukan pada perencanaan SPAM. Data tersebut berupa dimensi pipa yang sesuai, headloss pada pipa, serta sisa tekan pada pipa. Dalam proses analisis terdapat nomor node dan pipa seperti pada Gambar 1.

Gambar 1 Penomoran titik dan pipa.
Analisis perhitungan kebutuhan air pada periode waktu tertentu menggunakan Epanet 2.2 dengan memasukkan load factor yang dimana direncanakan jam puncak yaitu pada jam 06:00 pagi dengan load factor 1,56. Setelah mengetahui kebutuhan air pada jam puncak, selanjutnya diperlukan analisis perbandingan volume reservoir eksisting dengan kebutuhan air untuk dapat mengetahui ketersediaan pemenuhan kebutuhan (Wahyu Diana et al., 2020). Berdasarkan jumlah volume reservoir eksisting yaitu 48 m3 sedangkan kebutuhan air puncak diperoleh 34.524 liter/jam atau 34.524 m3. Maka dapat disimpulkan bahwa reservoir eksisting mencukupi untuk pelayanan jam puncak SPAM di Desa Manggis.

Pada jam puncak, standar operasional yang di tentukan yaitu tekanan minimal pada titik node yaitu 5 m kolom air dan kecepatan air pada pipa yaitu minimal 0,3 m per detik harus terpenuhi (Sulistia K. S. J et al., 2021). Setelah dilakukan analisis dengan bantuan software Epanet 2.2 semua syarat sudah dikategorikan memenuhi standar Sistem Penyediaan Air Minum (SPAM). Maka dari itu jaringan yang telah dimodelkan dengan Epanet 2.2 tersebut sudah dapat direncanakan. Berdasarkan hasil analisis Epanet 2.2 didapat tekanan tertinggi yaitu 101,51 m air maka pipa yang digunakan adalah pipa HDPE PN 16 yang mampu menahan tekanan sampai 16 BAR. Proses selanjutnya yaitu perhitungan Rencana Anggaran Biaya (RAB) dengan menggunakan hasil diameter, panjang pipa dan spesifikasi pipa yang didapatkan dari hasil analisis pemodelan epanet yang dijelaskan pada Tabel 4.

![Tabel 4 Dimensi dan panjang pipa](image)

<table>
<thead>
<tr>
<th>Diameter Pipa</th>
<th>Panjang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipa HDPE 100 PN 16 Ø 125 mm</td>
<td>1.600,00</td>
</tr>
<tr>
<td>Pipa HDPE 100 PN 16 Ø 100 mm</td>
<td>1.700,00</td>
</tr>
<tr>
<td>Pipa HDPE 100 PN 16 Ø 60 mm</td>
<td>210,00</td>
</tr>
<tr>
<td>Pipa HDPE 100 PN 16 Ø 50 mm</td>
<td>600,00</td>
</tr>
<tr>
<td>Pipa HDPE 100 PN 16 Ø 40 mm</td>
<td>2.300,00</td>
</tr>
<tr>
<td>Pipa HDPE 100 PN 16 Ø 32 mm</td>
<td>2.000,00</td>
</tr>
</tbody>
</table>

Perhitungan Rencana Anggaran Biaya (RAB)

Setelah melakukan analisis untuk mengetahui model jaringan perpipaan yang akan digunakan dalam perencanaan pengoptimalisasian pemanfaatan mata air Jagasari untuk SPAM di Desa Manggis sampai periode 2033 maka dihasilkan panjang pipa, diameter pipa dan spesifikasi pipa yang akan digunakan. Setelah mengetahui maka dilakukan perhitungan RAB. Hasil perhitungan tertera pada Tabel 5.

![Tabel 5 Rencana Anggaran Biaya](image)

<table>
<thead>
<tr>
<th>NO</th>
<th>URAIAN</th>
<th>JUMLAH HARGA (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>PEKERJAAN PERSIAPAN</td>
<td>7.871.760,00</td>
</tr>
<tr>
<td>II</td>
<td>PEKERJAAN TANAH</td>
<td>148.455.262,50</td>
</tr>
<tr>
<td>III</td>
<td>PENGADAAN PIPA</td>
<td>641.789.100,00</td>
</tr>
<tr>
<td>IV</td>
<td>PEMASANGAN PIPA</td>
<td>67.562.150,00</td>
</tr>
<tr>
<td>V</td>
<td>FLUSHING PIPA</td>
<td>9.166.900,00</td>
</tr>
<tr>
<td>VI</td>
<td>PENGADAAN DAN PEMASANGAN</td>
<td>600.663.000,00</td>
</tr>
<tr>
<td>VII</td>
<td>ACCESSORIES PIPA</td>
<td>13.730.570,00</td>
</tr>
<tr>
<td></td>
<td>JUMLAH TOTAL A</td>
<td>1.529.239.000</td>
</tr>
</tbody>
</table>

Optimalisasi Pemanfaatan Mata Air
KESIMPULAN
Berdasarkan hasil analisis perencanaan SPAM di Desa Manggis Kecamatan Manggis Kabupaten Karangasem Bali, dapat disimpulkan bahwa:
1. Sistem jaringan gravitasi dengan sumber mata air Jagasatu yang memiliki debit 10 liter/detik dapat memenuhi kebutuhan air di Desa Manggis sampai 2033 karena kebutuhan air di desa manggis adalah 6,369 liter per detik dan memenuhi syarat SPAM dengan tekanan yang direncanakan lebih dari 5 m kolom air dan kecepatan aliran lebih dari 0,3 m/detik.
2. Dusun yang dapat dijangkau perencanaan sebanyak 10 dusun karena elevasinya lebih rendah dari pada sumber yang memiliki elevasi 169 m diatas permukaan laut (mdpl) yaitu Dusun Siig dengan elevasi 110 mdpl, Dusun Pande dengan elevasi 59 mdpl, Dusun Tengah dengan elevasi 47 mdpl, Dusun Kawan dengan elevasi 35 mdpl, Dusun Kelodan dengan elevasi 39 mdpl, Dusun Buitan dengan elevasi 20 mdpl, Dusun Apiyeh Kaja dengan elevasi 52 mdpl, Dusun Apiyeh Kelod dengan elevasi 42 mdpl, Dusun Belong dengan elevasi 38 mdpl, Dusun Yehpoh dengan elevasi 95 mdpl
3. Rencana Anggaran Biaya yang diperoleh yaitu Rp. **1.529.239.000** yang meliputi biaya untuk pengadaan barang dan jasa untuk pekerjaan galian pipa, pemasangan pipa, pengetesan pipa, flushing pipa dan pemasangan Sambungan Rumah (SR).

DAFTAR PUSTAKA

Optimalisasi Pemanfaatan Mata Air Jagasatriu untuk Layanan Sistem Penyediaan Air Minum (SPAM) di Desa Manggis

Originality Report

<table>
<thead>
<tr>
<th>Similarity Index</th>
<th>Internet Sources</th>
<th>Publications</th>
<th>Student Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>22%</td>
<td>23%</td>
<td>6%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Primary Sources

<table>
<thead>
<tr>
<th>Number</th>
<th>Source</th>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>digilib.uinsby.ac.id</td>
<td>Internet Source</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>Submitted to Sriwijaya University</td>
<td>Student Paper</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td>jurnal.polinela.ac.id</td>
<td>Internet Source</td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>ejournal.unsrat.ac.id</td>
<td>Internet Source</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>riset.unisma.ac.id</td>
<td>Internet Source</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>docplayer.info</td>
<td>Internet Source</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>123dok.com</td>
<td>Internet Source</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>text-id.123dok.com</td>
<td>Internet Source</td>
<td>1%</td>
</tr>
<tr>
<td>9</td>
<td>docobook.com</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>#</td>
<td>Source Description</td>
<td>Source URL</td>
<td>Percentage</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>9</td>
<td>Internet Source</td>
<td>jurnal.untan.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>10</td>
<td>Internet Source</td>
<td>jurnal.unej.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>11</td>
<td>Internet Source</td>
<td>jurnal.unej.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>12</td>
<td>Internet Source</td>
<td>erepo.unud.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>13</td>
<td>Student Paper</td>
<td>Submitted to Universitas Jember</td>
<td><1%</td>
</tr>
<tr>
<td>14</td>
<td>Internet Source</td>
<td>ojs.stiami.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>15</td>
<td>Student Paper</td>
<td>Submitted to Politeknik Negeri Bandung</td>
<td><1%</td>
</tr>
<tr>
<td>16</td>
<td>Internet Source</td>
<td>repository.bakrie.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>17</td>
<td>Internet Source</td>
<td>dqlab.id</td>
<td><1%</td>
</tr>
<tr>
<td>18</td>
<td>Internet Source</td>
<td>repository.unej.ac.id</td>
<td><1%</td>
</tr>
<tr>
<td>19</td>
<td>Internet Source</td>
<td>www.scribd.com</td>
<td><1%</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Submitted to LL DIKTI IX Turnitin Consortium Part II</td>
<td><1%</td>
</tr>
</tbody>
</table>
Student Paper

Ricka Octaviani, Reza Shintia Eka, Dwi Alfin K. "GERAKAN SOSIAL KORBAN LUSI (LUMPUR SIDOARJO)", JKMP (Jurnal Kebijakan dan Manajemen Publik), 2015

Publication

repository.ub.ac.id
Internet Source

<1 %

ejurnal.ung.ac.id
Internet Source

<1 %

id.123dok.com
Internet Source

<1 %

journal.rniito.org
Internet Source

<1 %

repository.its.ac.id
Internet Source

<1 %

repository.ummat.ac.id
Internet Source

<1 %

videleaf.com
Internet Source

<1 %

e-journal.unmas.ac.id
Internet Source

<1 %

ejournal.uika-bogor.ac.id
Internet Source

<1 %

ejurnal.bppt.go.id