Analysis of Propeller Selection for Unmanned Aircraft

  • Danartomo Kusumoaji Pusat Riset Teknologi Penerbangan - Badan Riset dan Inovasi Nasional, Bogor
  • Abdul Aziz Pusat Riset Teknologi Penerbangan - Badan Riset dan Inovasi Nasional, Bogor
  • Irma Rismayanti Pusat Riset Teknologi Penerbangan - Badan Riset dan Inovasi Nasional, Bogor
  • Ildefonsa A. F. Nahak Pusat Riset Teknologi Penerbangan - Badan Riset dan Inovasi Nasional, Bogor

Abstract

Unmanned aircraft are usually used to perform missions, for example surveillance missions. This mission is not always carried out in a suitable location. Researchers must ensure that the aircraft can take off properly. For this reason, runway distance greatly affects the performance of the aircraft. The aircraft can fail to take off due to the lack of thrust generated by the propeller. The propeller diameter size of each unmanned aircraft can differ from one another and this difference in propeller diameter causes a difference in thrust force. Therefore, it is very important to determine the right propeller diameter to be used on an unmanned aircraft that is adjusted to the runway distance. This propeller selection analysis is carried out using experimental methods, which is tool testing and simulation with Propeller Power Calculator software. The results of this study can be seen that a propeller with a larger diameter will produce a greater thrust force. The size of the diameter and pitch and the number of blades of a propeller can also affect the amount of thrust generated. This will be a consideration for choosing a propeller to be used on an unmanned aircraft. So that the selected propeller can be used optimally by reviewing the amount of thrust that is influenced by the amount of diameter.

References

Adiansyah Y, Isranuri I, Hamsi A, Sabri M, Syam & Bustami. 2018. Simulasi Tegangan Propeller Al-Mg yang Dirancang Untuk Propeller Rendah Bising. Jurnal Dinamis. 6(3): 81-92.

Akkoyun F, Bogrekci I, Demircioglu P & Vardin S. 2018. An Experimental Study to Investigate the Effect of the Angle of Attack on VToL UAV Propellers. IFAC Papers Online. 51(30): 441-445.

Anggraeni D, Sumaryanto AR, Sumarna E & Rahmadi, A. 2014. Engine and Propeller Selection for Propulsion System LAPAN Surveillance UAV-05 (LSU-05) Using Analytic and Experimental Test. International Seminar of Aerospace Science and Technology II. pp. 41-50.

Atmasari N, Muksin, Hartono, & Hidayat R. 2020. Analysis of Engine and Propeller Selection for Unmanned Aircraft LSU-05 NG. Angkasa Jurnal Ilmiah Bidang Teknologi. 12(2): 159-166.

Bandung-aeromodeling.com. 2023. Aerodynamics Forces. Retrieved from website: http://bandung-aeromodeling.com/tutorial.php?nid=50. [28 Agustus 2023]

Free Online Private Pilot Ground School (n.d). Propeller Aerodynamics. Retrieved from website:
http://www.free-online-private-pilot-ground-school.com/propeller-aerodynamics.html [28 Agustus 2023]

Jaiganesh V, Manivannan S, & Manivannan S. 2014. Numerical Analysis and Simulation of Nylon Composite Propeller for Aircraf. Procedia Engineering. 97: 1079-1088

Kristianto H, Purwanto MT & Bambang S. 2015. Kontrol Daya Dorong Pesawat Terhadap Perubahan Flow Udara. Makalah Seminar Hasil Konsentrasi Teknik Sistem Kontrol Universitas Brawijaya.

McCauley (n.d). Professor Von Kliptip s Twelve All-Time Favorite Questions and Answers About Propeller Performance on Personal and Business Aircraft. Retrieved from website:
https://docplayer.net/20826912-Propeller-performance-on-personal-and-business-aircraft.html [29 Agustus 2023]

Naoki Y, Yokota K, Nagai S, & Fujimoto H. 2022. Achievable Thrust Expansion Control at Current Saturation of Variable-Pitch Propeller for Drones. IFAC PapersOnLine. 55(27): 247-252.

Osovskii D, Sharatov A, Gorbenko A, Klimenko N, Sharatova N & Bidenko S. 2019. CFD Modeling and Study of Additional Medium Jet Impact on the Blade of the Propeller. Procedia Computer Science. 167: 1096-1101

Peixun Yu, Jiahui Peng, Junqiang Bai, Xiao Han & Xiang Song. 2019. Aeroacoustic and aerodynamic optimization of propeller blades. Chinese Journal of Aeronautics. 33(3): 826-839.

Saroinsong HS, Poekoel VC & Pinrolinvic DKM. 2018. Rancang Bangun Wahana Pesawat Tanpa Awak (Fixed Wing) Berbasis Ardupilot. Teknik Elektro dan Komputer. 7(1): 2301-8402.
Published
2024-07-03
How to Cite
KUSUMOAJI, Danartomo et al. Analysis of Propeller Selection for Unmanned Aircraft. Jurnal ILMU DASAR, [S.l.], v. 25, n. 2, p. 89-94, july 2024. ISSN 2442-5613. Available at: <https://jurnal.unej.ac.id/index.php/JID/article/view/43794>. Date accessed: 26 aug. 2024. doi: https://doi.org/10.19184/jid.v25i2.43794.
Section
General