Electric Field Distribution Analysis of Blood Cancer as a Potential Blood Cancer Therapy

  • Miftakhul Firdhaus Laboratory of Medical Physics and Biophysics, Departement of Physics, Institut Teknologi Sepuluh Nopember, Surabaya
  • Ulya Farahdina Laboratory of Medical Physics and Biophysics, Departement of Physics, Institut Teknologi Sepuluh Nopember, Surabaya
  • Vinda Zakiyatuz Zulfa Laboratory of Medical Physics and Biophysics, Departement of Physics, Institut Teknologi Sepuluh Nopember, Surabaya
  • Endarko Endarko Laboratory of Medical Physics and Biophysics, Departement of Physics, Institut Teknologi Sepuluh Nopember, Surabaya
  • Agus Rubiyanto Laboratory of Medical Physics and Biophysics, Departement of Physics, Institut Teknologi Sepuluh Nopember, Surabaya
  • Nasori Nasori Laboratory of Medical Physics and Biophysics, Departement of Physics, Institut Teknologi Sepuluh Nopember, Surabaya

Abstract

Blood cancer causes a significant increase in the concentration of Leukocytes, which can be broken down through dielectrophoresis and electrochemical procedures. Therefore, the electric field plays an important role in the migration of leukocytes to high voltage areas. This is because different electrode arrangements produce varying electric field distributions. Furthermore, this study applied finite element methods to generate electric fields when electrodes with an AC voltage were applied to blood placed in a chamber. Therefore, in this study, variations of mediums and electrode arrangements were investigated, which led to the recommendation of 3 models. The objective was to investigate electrode arrangements that produce optimal electric field distribution for the three models to exhibit a booster of electric field distribution. The maximum electric field is generated close to the electrode (Z=2 mm and Z=92 mm) for any material (i.e. normal blood, B lymphocyte, and T lymphocyte) with values of 22.6 V/m and 23.47 V/m, 22.85 V/m and 22.97 V/m, and 24.88 V/m and 25.01 V/m. Based on principle, lymphocytes in the blood result in positive dielectrophoresis, since they migrate to a higher electric field close to the electrode, with enough input voltage to turn the electrochemical process on the leukocytes into electric current. Furthermore, this study provides new perspectives and ideas, which have not been revealed in previous studies on blood cancer therapy using the electric field of Ag electrode in blood cancer distribution.
Keywords: blood cancer, dielectrophoresis, electric field, voltage, electrochemical, and cancer therapy.

References

Alamsyah F, I.N. Ajrina, F.N.A. Dewi, D. Iskandriati, S.A. Prabandari, and W.P. Taruno. 2015. “Antiproliferative Effect of Electric Fields on Breast Tumor Cells In Vitro and In Vivo.” Indonesian Journal of Cancer Chemoprevention. 6(3): 71-77.

Andiani L, Endarko, Mahfudz Al Huda, and W.P. Taruno. 2017. "A Novel Method For Analyzing Electric Field Distribution Of Electro Capacitive Cancer Treatment (Ecct) Using Wire Mesh Electrodes: A Case Study Of Brain Cancer Therapy." Euromediterranean Biomedical Journal. 12(38): 178–183.

Beckert F. F., X-B Wangt, Y Huangt, R Pethigt, J Vykoukalt and P R C Gascoyne. 1994. "The removal of human leukaemia cells from blood using interdigitated microelectrodes." J. Phys. D: Appl. Phys 27: 2659-2662.

Bethlem, H.L. 2002. Deceleration and Trapping of Polar Molecules Using Time-varying Electric Fields. Netherlands: Thesis. Katholieke Universiteit Nijmegen.

Dickinson, E.J.F., H. Ekström and E. Fontes. 2014. "COMSOL Multiphysics ®: Finite element software for electrochemical analysis. A mini review." Electrochem. Commun. 40: 71–74.

Doh, I. and Y.H. Cho. 2005. "A continuous cell separation chip using hydrodynamic dielectro-phoresis (DEP) process." Sens. Actuators A: Phys. 121(1): 59-65.

Hiroko, I., T. Yamakawa and M. Eguchi. 2012. "Separation of Leukemia Cells from Blood by Employing Dielectrophoresis." Intelligent Automation & Soft Computing 18(2): 139-152.

Huang Y. and R. Pethig. 1991. “Elecrrode Design for Negative Dielectrophoresis.” Measurement Science and Technology. 2(12): 1142-1146.

IFAC. 2020. Calculation of the Dielectric Properties of Body Tissues in the frequency range 10 Hz - 100 GHz. Agustus 31.

Justin, G. A, Y. Zhang, X. T. Cui, C. W Bradberry, M. Sun and R. J. Sclabassi. 2011. "A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents." Journal of Biological Engineering. 5(5).

Jouyban A., S. Soltanpour and H.K. Chan. 2004. "A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature." International Journal of Pharmaceutics 269: 353–360.

Kirson, E.D, V. Dbalý, F. Tovarys, J. Vymazal, J.F. Soustiel, A. Itzhaki, D. Mordechovich, S. Steinberg-Shapira, Z. Gurvich, R. Schneiderman, Y. Wasserman, M. Salzberg, B. Ryffel, D. Goldsher, E. Dekel and Y. Palti. 2007. "Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors." Proc Natl Acad Sci U S A. 104(24): 10152-101527.

Kirson E.D, Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, Y. Wasserman, R. Schatzberger and Y. Palti. 2004. "Disruption of cancer cell replication by alternating electric fields." Cancer Res. 64(9): 3288-3295.

Korshoej A.R, F.L. Hansen, N. Mikic, G. von Oettingen, J.C.H. Sørensen and A. Thielscher. 2018. "Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations." PLoSONE. 13(8): e0201957.

Ma, W., T. Shi, Z. Tang, S. Liu, R. Malik and L. Zhang. 2011. "High-throughput Dielectrophoretic Manipulation of Bioparticles Within Fluids Through Biocompatible Three Dimensional Microelectrode Array." Electrophoresis. 32(5): 494-505.

Morgane C, O. Larue and E. Vorobiev. 2015. "Electric (Electro/ Dielectro-Phoretic) dForce Field Assisted Separators." In Progress in Filtration and Separation, by Steve Tarleton, 325-397. London: Elsevier.

Mota J.P. F., A. E. da Costa Júnior, V. G. P. Ribeiro, S. G. Sampaio, N. M. A. Lima, F. L. F. da Silva, C. S. Clemente, G. Mele, D. Lomonaco and S. E. Mazzetto. 2017. "Synthesis, Characterization and Dielectric Properties of New 5-(4-Hydroxyphenyl)-10,15,20-tri-4-[2-(3-entadecylphenoxy)ethoxy]phenyl porphyrin and Their Ni, Co and Cu Complexes." J. Braz. Chem. Soc. 28(6): 1063-1073.

Palti. 2007. Method for Selectively Destroying Dividing Cells. Patent Application Publication. United States Patent 20070033660A1. February 8.

Pasquier, E. and M. Kavallaris, 2007. "Microtubules: a Moving Target in Cancer Therapy." IUBMB lIFE. 60(3): 165-70.

Pethig, R. and G. H. Markx. 1997. "Applications of dielectrophoretic in biotechnology." Trends Biotechnol. 15: 426-432.

Rodriguez-Abreu D, A. Bordoni and E. Zucca. 2007. "Epidemiology of hematological malignancies." Annals of Oncology. 18(3): 13-18.
SEER. 2020. SEER Stat Fact Sheets: Leukemia - Cancer Stat Facts. Agustus 30. https://seer.cancer.gov/statfacts/html/leuks.html.

Surowiec A., S. S. Stuchly and C. Izaguirre. 1986. "Dielectric properties of human B and T lymphocytes at frequencies from 20 kHz to 100 MHz." Phys. Med. Biol. 31(1): 43-53.

Taruno, W. P. 2012. Indonesia Patent REG P00201200092.

Uchechukwu C. Wejinya, N. Xi, and K. Wai C. Lai. 2012. "Design and Generation of Dielectrophoretic Forces for
Manipulating Carbon Nanotubes." Nano-Optoelectronic Sensors and Devices. 29-49.

Ward T., A. Rollan, G. Flynn, and A.P. McHalea. 1996. "The effects of electric fields on photosensitized rythrocytes:
possible enhancement of photodynamic activation." Cancer Letters. 106: 69-74.

Zhao, M., Forrester, J.V. and McCaig, C.D. 1999. "A Small, Physiological Electric Field Orients Cell Division." Proc. Natl. Acad. Sci. USA. 96(9): 4942-4946.
Published
2021-07-12
How to Cite
FIRDHAUS, Miftakhul et al. Electric Field Distribution Analysis of Blood Cancer as a Potential Blood Cancer Therapy. Jurnal ILMU DASAR, [S.l.], v. 22, n. 2, p. 127-136, july 2021. ISSN 2442-5613. Available at: <https://jurnal.unej.ac.id/index.php/JID/article/view/19784>. Date accessed: 27 sep. 2021. doi: https://doi.org/10.19184/jid.v22i2.19784.
Section
General