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ABSTRACT 

 
AMMI (Additive Main Effect Multiplicative Interaction) model for interactions in two-way table provide  the 
major mean for studying stability and adaptability through genotype × environment interaction (GEI), which 
modeled by full interaction model.  Eligibility of AMMI (Additive Main Effect Multiplicative Interaction) 
model depends on that assumption of normally independent distributed error with a constant variance.  In the 
study of genotypes’ resistance, disease and pest (insect) incidence on a plant for example, the appropriateness of 
AMMI model is being doubtful.  We can handle it by introducing multiplicative terms for interaction in wider 
class of modeling, Generalized Linear Models. Its called Generalized AMMI model. An algorithm of iterative 
alternating generalized regression of row and column estimates its parameters. GAMMI log-link model will be 
applied to the Poisson data distribution. GAMMI log-link  models give us good information of the interaction by 
its log-odd ratio. 
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INTRODUCTION 
 
The AMMI model represents observations into 
a systematic component that consists of main 
effect and interaction effect through 
multiplication of interactions components, 
apart from random errors component. 
Basically, the AMMI analysis combines both 
additive analysis of variance for the main effect 
of treatment and analysis of multiple main 
components uses bilinear modeling for the 
interaction effect, by using singular value 
decomposition (SVD) of its interaction matrix 
(Mattjik & Sumertajaya 2002, Hadi & Sa’diyah 
2004, Mattjik 2005). Sometimes, goodness of 
fit AMMI models which have normally 
distributed errors with constant variances 
cannot be satisfied. Statistical modeling plays 
the most important role in the providing 
interpretation of interest phenomenon, and 
representing it into appropriate language of 
application field. 
 Transformation can be omitted if 
homogeneity of variances can be modeled by 
multiplication of interactions components in 
the systematic model. However, for non-
normally distributed data which is modeled in 
the observation scale, multiplication of 
interactions components maybe represent both 
homogeneity of variances and true 
multiplication of interactions. It means that 

there is no warranty that transformation of data 
in the observation scale be able to separates 
them. 
 Transformation, in the regression analysis 
and analysis of variance cases, has three goals, 
i.e., to obtain homogeneity of variances, 
normally of errors, and additional of systemic 
effects. It is not easy to obtain a satisfaction 
transformation for all need. So, after 
transforming, multiplicative component maybe 
still represents mixture of heterogeneity of 
variances and multiplicative effects (Hadi et al. 
2007).  
 While, in the additive models, we have 
widely known  generalized linear models 
(GLM) as a modeling class of non-normally 
distributed data. In GLM additiveness of 
systemic effects is given into normally scale. 
Normally (and homogeneity) of variances is 
not necessary again. It is because the (quasi) 
likelihood just need to fix the relationship 
between mean and variance only. 
 Multiplicative models (bilinear)  bridge the 
gap between the main effect models (in 
ANOVA and GLM) and completely interaction 
models with interaction parameters for each 
cell in two way table. This models are also give 
a visually pattern of the main interaction 
through biplot. Therefore, developing of GLM 
theory by accommodate the multiplicative 
component of interaction is very necessary. 
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The power of  multiplicative AMMI model is 
placed on visualized interactions by using 
biplot. Van Eeuwijk (1995) proposed the 
multiplicative model in term of GLM as an 
extension of AMMI model called as 
generalized AMMI (GAMMI) model. In the 
GAMMI model, it is possibly to visualize 
interactions. However, as proposed by Van 
Eeuwijk 1995 that interpretation of the AMMI 
model must be investigated again, because it 
depends on link function used in spite of 
distance its points still represents non-
additiveness or dependence. This paper 
discuses fitting bilinear model in term of GLM, 
especially for discrete observations, Poisson 
and Binomial distributions. 
 
Generalized linear models 
Classical Linear models have some 
characteristics, i.e., errors or response variables 
are normally distributed with constant 
variances, independent variances of means, and 
errors or response variables are independent of 
each other. In the larger model class, it is not 
depend on these assumptions. Nelder & 
Wedderburn (1972) discussed GLM which is 
not depend on these assumptions but it just 
depends on link function that links between 
means   and linear predictors  of 
probability distribution model used (Mc 
Chullagh & Nelder 1989). 
 Response variables   are 
observation values of random variables  

assumed have certain distribution 
(exponential family) with means    . 
In fact, a variance function of mean   
which accompanies dispersion parameter, 
follows distribution assumptions 

where φ is a dispersion 
parameter (scale factor) and   is variance 
function. The means  is linked to linear 
predictors   or  where 

 are known predictor variables, and  are 
unknown parameters to be estimated by using 
link function . Although, each 
observation maybe has different link function, 
it rarely happens. So, the subscript i  of 

function  can be ommited  or  can be 
reduced to . Estimating of parameters  

in vector  can be done by using weighted 
linear regression iteration procedure of 

linearized link function which applies to 
observation (y) of predictor variable (x).  
 
Table 1. Canonical Link functions in 

generalized linear models. 
 

Respon 
distribution Name Link function 

Normal Identity  

Poisson Log  

Binomial Logit   

Negative 
Binomial  Log 

Gamma Invers 
 

 
Linearized link functions or working variates 
(in GLIM),  have form 

,                         or 
  (McChullagh 

& Nelder 1989, Van Eeuwijk 1995, 
Falguerolles 1996).  Each observation also has 
prior weight  , or 

. In every iteration 
circle, values of  x and z are updated. This 
method is known as iterative reweighted least 
square (IRLS). 
 In general, generalized linear model (GLM) 
has some characteristics as follows : 
 
- Response variable Y has distribution in the 

exponential distribution family; 
  

- Linear or systemic component links linear 
predictor  to multiplication between 

design X and parameter  , ; 

 

- Link function  that links linear predictor 

to fitted values, follows monotonic and 
differentiable properties. The  describes 

how the expected response mean is linked 
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to , for example,  and 

; 

- Response variables may have no constant 
variances that their values are to be change 
as changing of their means,  

 
Generalized ammi model 
In an experiment, responses observed 
sometimes is to be categorical data. It affects 
that AMMI model approach becomes 
unrelevant. So, it needs to make analysis by 
using other approach. For this case, AMMI 
model has also been developed to handle more 
general cases. This model approach is known 
as generalized AMMI (GAMMI) model (Van 
Eeuwijk 1995) or generalized bilinear models 
(GBMs) (Falguerlles 1996, Gabriel 1998). The 
GAMMI models are given as follows : 

 
 
An AMMI model is a GAMMI model that its 
link function is to be identity with constant 
variance. By letting values of  and , it 
reduces the model to GLM along the row; 
while letting values of  and  reduces the 
model to GLM along the column. This 
GAMMI model’s characteristic can be used as 
base line to describe parameter estimate 
procedure. Other parameter estimate procedure 
usually uses iterative weighted least square. 
Fitting GAMMI model is done iterativelly 
through some steps (Van Eeuwijk 1995, 
Falguerolles 1996).  The number of 
multiplicative part in the GAMMI model can 
be determined by using generalized test of 
AMMI model as follows : 
1. Likelihood ratio test for the first eigen 

value, and for the second eigen value if the 
first eigen value has been known, and for 
the next eigen values.This test compares 
percentage of those between that can be 
described by certain part and the total will 
be described; and it needs no error estimate.  

2. F-test needs no special table, and be easy in 
computation. An independent error estimate 
(over/under dispersion) is needed and 
maybe gives problem. 

3. Simple test with attribute degree of freedom 
  on the 

eigen value with respect to pivot k, becomes 
difference between the number of  

parameters that will be estimated and the 
number of applied identification constraints. 
Appropriate mean square is then tested 
versus an error estimate (over/under 
dispersion). This test was proposed by 
Golob, 1968. When the first eigen value 
relatively more than the next eigen value, 
attribute degree of freedom will save to 
follow Golob, and collect next part to 
estimate error (over/under dsipersion). 
Sequential application of this procedure is 
to test eigen value of success versus 
collected estimate errors. 
 

 Adding other multiplicative components for 
GAMMI model needs recomputing of part that 
has been inputed. Because of differences cells 
weight , dimension of success is not nested as 
usual for the AMMI model with the same cell 
weight. 
 Error for diagnostic goal, after convergence, 
can be obtained from the row regression as 
well as column regression. Errors of row and 
column regressions will deviate just a little 
from the others, because computing of row 
regression errors assumes column parameters 
more known than parameters estimate. While 
for column regression error, estimating of row 
parameters is also not necessary to be known. 
Other possibility is to make regressor of 
parameters result of row and column  
interactions in the same way as one degree of 
freedom test for additiveness which gives a 
regression interpretation, and fits the model 
with their main effect and regressors. Error of 
this model is a compromised result between 
row regression and column regression errors. 
 Diagnostic error done to assess goodness of 
fit model is adopted from the GLM. Goodness 
of fit model can be informally investigated by 
plotting errors versus fitted values. Generally, 
for assessment goodness of fit model is 
suggested to use standardized deviance error 
and plot it versus linear predictor, or versus 
fitted values transformed to information scale 
constant of error distribution. Transformations 
of fitted value for some errors distribution are 

 for normally distributed error;  for 

Binomial error;   for Poisson error; 

  for Gamma error, and soon. 
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Goodness of fit model is showed by pattern of 
errors that spread randomly with constant shift 
at zero mean. Systemic deviation on this plot is 
to be in forms: (i) curve form, or (ii) existence 
of shift change as fitted value change. Curve 
form can be caused by one of link function use. 
So, if the plot contain no deviation, we may 
clime that the link function used is appropriate 
(model is appropriate). The same thing can also 
be obtained from errors plot versus linear 
predictors. Note that this plot is meaningless 
for binary data. Some other errors plots is used 
to investigate variance function and link 
function which are used (McChullagh & 
Nelder 1989). 
 Plot absolute value of error versus fitted 
value gives informal investigation about 
properness variance function assumed. This 
properness is showed by spreading around of 
points horizontally, and no indication of trends 
or certain pattern. Improperness of variance 
function is showed by trend on mean, i.e., 
positive trend shows that that variance function 
currently used is gradually increase as 
increasing of mean and vice versa. Informal 
investigation about link function used can be 
done by investigating plot working variate 
versus linear predictor, but it is not general and 
meaningless, especially for Binomial 
distribution. 
 
Visualization interactions by using biplot 
GAMMI models 
Biplot is very good to show multiplicative 
interaction in AMMI models. In Biplot, rows 
and columns are represented by points in two 
or three dimension spaces. Coordinate of points 
are obtained from rows and columns scores. 
Singular values are placed to rows and columns 
scores in different ways based on what interest, 
i.e., the relationships among rows, columns, or 
among rows and columns. By plotting rows 
scores , the distances among rows 
points are proportional to the number of rows 
interactions. Plotting  transforms 
this relationship to column points. By assuming 
row and column point as terminal point of 
vector started at initial point, simple-
geometrically can be showed that the number 
of interactions, or non-additive, between a row 
and column can be approached by inner-
product among vectors in Biplot.  This inner-
product can be obtained by projecting one of 
row or column vectors to each other, and then 
multiplying between length of vector and 

length of vector where the projection occurs. 
For the wide class of GAMMI model, it is 
probable to visualize interaction by using 
Biplot, but its interpretation depends on certain 
link function. 
 
Log-bilinear gammi models 
Here we give an other special example of 
GAMMI model which is to be  row x column 
Goodman’s model (RC Goodman’s model) for 
two ways frequencies table I x J. The model 
assumes that each cell I x J are independent 
and has Poisson distribution. Pij is probability 
of observations placed in ith row and jth column,  

 
 
where and  are positive parameters. 
 As an identification constrain of 
multiplicative interaction part, we use same 
constrain as AMMI model constrain. By taking 
logarithm, that model is equivalent to log-
bilinear model: 
 

 
 
and known as generalized AMMI model with 
logarithm as link function, where the  and 

 are the logarithmic form of and .   

 Non-independent form is more relevant to 
association row x column model than non-
additive form. Goodman defined two forms of 
non-independent as follows.  
The first is,   

 
 
and the second is Log Odds Ratio : 

 
 
It is defined for cells in rows i  and s ; and 
columns j and t. Scaled row parameter 

   can be interpreted as slope of  a 
weighted linear regression of non-independent 
measure   on column score  : 
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When  are used as coordinate of row 
points in biplot, squared distance between two 
row points tends to non-independent between 
two rows, because 

 
 
The same relationship can be obtain 
deductively for   and  . Therefore, 
Goodman recommended to visualize from row 
points and column points by using  

  and , 
respectively.  
 For simultaneously visualize, he 
recommended to use  and  

,   where the 
choice of c depends on its weighted-point in 
row or column. The inner-product between row 
and column points in simultaneous biplot tends 
to non-independent measure  where γ and δ 
are scaled to γ*and δ*  as follows :  
 

 
 

 
 
where γi

* and δj
* represent as vector of length 

K. In the same biplot, inner-product between 
difference of row points and difference of 
column points tends to log odds ratio :  
 

 

 

 
 

 
where   ,  ,  and   are vectors of 
length K. Simultaneous biplot provides a very 
good tool to visualize non-independence in two 
way table of computing analyzed by 
association row × column. For other GAMMI 
model, interpretation of relationship biplot still 
must be investigated.  In addition, distance 

between points of one of rows or columns will 
indicate some non-additive or non-independent 
forms. Simultaneously visualize must be 
interpreted more carefully, but the inner-
product of row or column points still tends to 
non-additive at linear predictor scale. 
 Especially, for Poisson data case (log-
bilinear model), biplot provides two important 
informations. Firstly, information about 
dependence between rows or columns which 
are showed by distance (square) between rows 
or between columns on biplot. And the second 
is information about ratio of two probabilities 
events (odds ratio).  
 This information is to be geometrical 
interpretation that uses vector projection 
properties. Odds is ratio of two probabilities 
events. From the two ways table genotype x 
population of pests can be obtained information 
about ratio of probabilities. We define xij as ith 
row and jth column cells values, and 

 is probability of  ith row and jth 
column events such that we can compute 
probability ratio of two genotypes, for instance, 
ith and sth genotypes are attacked by pests, say,  
jth pest, as .. 
 
Odds ratio 
Ratio of two odds’, for example, ratio between 
odds of  jth pest on ith genotype and sth 
genotype, and odds of tth pest on same, is given 
as follows : 

 
This odds ratio can be understood by seeing 
Figure 1B and considering ratio of difference 
length between a and b by c and d. Note that if 
vectors that connect two pests and connect two 
genotypes are perpendicular each other 
(orthogonal, α = 90o) then this ratio will be 
equal to 1, and logarithm of it is equal to zero. 
According to log-bilinear model (GAMMI log-
link) odds ratio can be obtained logarithm 
scale: 
 

 
by taking derivation of formula, and gives : 
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Figure 1. Geometrical visualization of Odds (A) and Odds Ratio (B). 

 
METHODS 

 
The data is experimental data of leaf pest control on 
variety of soybean endure that is hybrid result of 
BALITKABI, Malang, East Java. This experiment 
involves four varieties of soybean endure resulted by 
hybrid (Wilis, IAC-100, IAC-80-596-2 and W/80-2-
4-20). This research uses leaf pest population data at 
14 days old after planting.  
  
Research steps to obtain information about 
stableness genotype endure are as follows : 
 
1. Identifying of distribution and handling of 

experiment data. Leaf pest population data 
identified has Poisson distribution. While, 
percentage of rice-grain and total of grain data 
identified has binomial distribution. These two 
sets of data are arranged into two ways table I x 
J, genotype versus type of leaf pest, and 
genotype versus location, where cells contain 
means of replication/block. 

2. Fitting GAMMI Model. Fitting GAMMI model 
algorithm is complicated enough, because it is to 
be a criss-cross regression or alternating 
regression between row and column regressions, 
where each regression includes GLM class that 
is done iteratively by using iterative reweighted 
least square (IRLS). Therefore, this algorithm 
involves three types of convergence, i.e., in row 
regression, in column regression, and in 
alternating regression. It is complexity of this 
modeling algorithm. However, basic idea of this 
algorithm seems easy to be understood. This 
algorithm is given in Van Eeuwijk, 1995. Fitting 
model is done by using software GENSTAT 7th 
edition or more expand. Poisson distribution data 
is modeled by using link function logarithm 

3. Analysis of Deviance. If in AMMI model 
(ANOVA in general) we test effect of factors by 
using sum of square then in GAMMI model 
(GLM in general) we use deviance. We use F-
test to determine multiplicative axis/component 
by comparing ratio between mean deviance 

component tested and error mean deviance to F-
table value. 

4. Appropriateness Model. We investigate 
appropriateness model by using errors diagnostic 
visually, i.e., errors plot. 

5. Analysis of Stableness Genotype Endure. 
Information about stableness genotype endure 
can be obtained through biplot GAMMI2 
configuration. Biplot GAMMI2 gives row and 
column scores plot (in this case, genotype x pest 
population or genotype x location) 
simultaneously. By considering whole biplot, 
nearness between row and column points shows 
interaction and dependence (association) of 
them. Association parameter is given by singular 
value (generalized). Nearness between certain 
row point (genotype) and certain column point 
(pest population or location) indicates 
association between genotype and certain pest 
population or location. Small singular value for 
ith GAMMI axis indicates meaningless of the 
axis.       

 
    

RESULTS AND DISCUSSION 
 

Endurance of soybean to leaf pest 
Four genotypes of soybean gave different leaf 
endurance responses on five types of leaf pest. 
Table 2 provides population mean of five pests 
found on four soybean varieties at 14 days old 
after planting.  Based on the algorithm of  
Eeuwijk (1995) GAMMI model was using link 
function natural logarithm and Poisson 
distribution. Analysis of deviance is given in 
Table 3.  It shows that  the mean of error 
deviance is 0.0134; and computation of error 
based on Pearson’s Chi-square is 0.0135. Table 
3 shows that GAMMI2 model is appropriate 
because mean deviance ratio of axis 2 is 
significant at p-value < 0.0541 = F4;2. Singular 
value of axis 1 and axis 2 are 1.739 and 0.5927, 
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respectively. Plotting of errors deviance versus 
fitted values and linear predictors shows that 
there is no anomaly. Plotting of working 
variate versus linear predictor can indicate 
improperness link function usage, if the plot is 
non linear. Also, the plot shows that there is no 
anomaly (Figure 2). So that GAMMI2 model 
which has log-link and has Poisson distribution 
fits data well. Biplot GAMMI2 provides 
information about interaction genotype × pest 
(Figure 3). Genotype W/80 shows tendency to 
be variety candidate that has endurance to all 
types of leaf pests unless to Emproasca, 
comparing with variety IAC-100 that 
specifically susceptible to Agromyza.   

 Biplot of interaction in log-bilinear model 
can be used well to find pairs of soybean 
genotypes and pairs of pest types population 
which has odds ratio equal to one or log odds 
ratio equal to zero. On our data, we find that 
these pairs are genotypes W/80 and IAC-80, 
and the Bemisia and the Agromyza. Delivery 
line of genotypes is “almost” perpendicular to 
its of pests. It means that log odds ratio “tends” 
to zero.  Table 2 can verify that odds ratio 
between both of them tends to 1. It means that 
W/80 and IAC-80 has the same thing, and 
W/80 and IAC-80 more tend to be attacked by 
Bemisia than the Agromyza in the same scale. 

 
Table 2. Population means of five types of leaf pest on four genotypes of soybean. 

 

Genotipe Types of leaf pest 
 Bemissia    Emproosca  Agromyza     Lamprosema  Longitarsaus 

IAC-100 0.50 1.75 2.25 0.50 1.75 
IAC-80 3.00 2.75 1.00 1.75 3.25 
W/80 3.50 4.00 1.25 2.00 2.00 
Wilis 4.00 3.00 1.00 1.75 4.00 

 
Table 3. Analysis of Deviance for leaf pest population data. 

 

Source DF Deviance Deviance Mean Deviance Mean 
Ratio p-value 

Leaf pest 4 4.1845 1.0461 78.38 0.0126 
Genotype 3 2.8359 0.9453 70.83 0.0139 
GAMMI 1 6 3.6709 0.6118 45.84 0.0215 
GAMMI 2 4 0.9477 0.2369 17.75 0.0541 
Error 2 0.0267 0.0133   

Total 19 11.6656 0.6140   
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Figure 2.  Error plot for soybean pest data: Standardized error versus fitted value GAMMI2 log 

link model (left); Working variate versus linear predictor plot (right). 
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Figure 3. Biplot GAMMI2 for leaf pest data with logarithm link function. 

 
CONCLUSION 

 
Generalized AMMI (GAMMI) model 
accommodates data non-normally distributed to 
obtain completely interaction decomposition by 
modeling probability of events.  In agronomy, 
it has benefit to test stability/adaptability of 
genotype on indicator variables that are non-
normally distributed, but their distribution have 
been known to be in exponential family, for 
examples, Poisson, Binomial, and Gamma. 
Biplot of Poisson GAMMI model with link 
function logarithm gives addition information 
about odds ratio. In study on endurance of 
soybean genotype on leaf pest, the GAMMI2 
model has described well that genotype W/80 
is to be variety candidate which is endure to 
almost all types of leaf pest. In addition, IAC-
100 is endure to the fly. The log-odds ratio of 
genotypes W/80 and IAC-100 to both Bemisia 
and Agromyza pests tend to zero. 
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