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ABSTRACT 
 

AMMI (Additive Main Effect Multiplicative Interaction) model for interactions in two-way table provide  the 
major mean for studying stability and adaptability through genotype × environment interaction (GEI), which 
modeled by full interaction model.  Eligibility of AMMI model depends on that assumption of normally 
independent distributed error with a constant variance.  Nowadays, AMMI models have been developed for any 
condition of MET data which  violence the normality, homogeneity assumpion.  We can mention in this class of 
modelling as M-AMMI for mixed AMMI models, G-AMMI for generalized AMMI models. The G-AMMI 
was handling non-normality i.e categorical response variables using an algorithm of alternating regression. 
While in handling the non-homogeneity in mix-models sense, one may use a model called factor analytic 
multiplicative. The development of AMMI models is also to handle any outlier that might be found coincides 
with non-homogeneity condition of the data.  In this paper, we will present of handling outlier in multplicative 
model by robust approach of alternating regression algorithm. 
 
Keywords: AMMI, G-AMMI, M-AMMI, factor analytic, multiplicative models, alternating regression, robust 

approach 
 

INTRODUCTION 
 
AMMI (Additive Main Effects and 
Multiplicative Interaction Analysis) was well 
described by Gauch (1988, 1992) and Gollob 
(1968).  AMMI may be viewed as a procedure 
to separate pattern (the G x E interaction) from 
noise (mean error of  treatment mean within 
trials). This is achieved by PCA, where the first 
axes (i.e. the axes with the largest eigenvalues) 
recover most of the pattern, whilst most of the 
noise ends up in later axes. The pattern can be 
viewed as the whole G × E effects weighed by 
an estimate of the pattern-to-noise ratio 
associated with the respective effect.  This 
pattern-to-noise ratio is a variance component 
ratio analogue to a repeatability or heritability 
coefficient (Piepho 1994). Multiplicative 
models AMMI have been popularised in a 
fixed model context and a number of 
applications have been found (Gauch 1988, 
1992, Crossa et al. 1990). AMMI analysis 
combines, in a model, additive components for 
main effects (treatments and environments) and 
multiplicative components for G × E effects.  
 AMMI model combines a univariate 
technique, ANOVA for the main effects and a 
multivariate technique PCA-principal 
component analysis, for G × E effects. Crossa 
(1990) suggests that the use of multivariate 
techniques permits a better use of information 
than the traditional regression methods.  This 

models are also give a visually pattern of the 
main interaction through biplot. The power of  
multiplicative AMMI model is placed on 
visualized interactions by using biplot. 
 The AMMI model represents observations 
into a systematic component that consists of 
main effect and interaction effect through 
multiplication of interactions components, 
apart from random errors component. 
Basically, the AMMI analysis combines both 
additive analysis of variance for the main effect 
of treatment and analysis of multiple main 
components uses bilinear modeling for the 
interaction effect, by using singular value 
decomposition (SVD) of its interaction matrix 
(Mattjik  & Sumertajaya  2000, Mattjik 2005). 
Eligibility of AMMI model depends on that 
assumption of normally independent 
distributed error with a constant variance.  
Nowadays, AMMI models have been 
developed for any condition of MET data 
which is violences in i.e the normality and 
homegeneity assumpion.  We can mention in 
this class of medelling as M-AMMI for mixed 
AMMI models, G-AMMI for generalized 
AMMI models. The G-AMMI was handling 
non-normality i.e categorical response 
variables using an algorithm of alternating 
regression (Eeuwijk 1995). The G-AMMI with 
normal data distributited and indentity link 
function is equal to AMMI models.  Some 
aplications of generalized alternating 
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regression speificlaly on poisson distribution 
can be found at Hadi et al . (2010). 
 Handling the non-homogeneity in mix-
models sense of AMMI, one may use a model 
called factor analytic multiplicative (Smith et 
al. 2002).  Smith et al. 2002 conclude that the 
factor analitic models is equivalent wtth AMMI 
mixed models. The development of AMMI 
models is also to handle any outlier that might 
be found coincides with non-homogeneity 
condition of the data.  We know that SVD is 
venurable to the outliers, so that the 
construction of robust model is a promising 
subject to be investigated.  In this paper, we 
will present of handling outlier in 
multiplicative model by robust approach of 
alternating regression algorithm.  
 
Factor analytic ANOVA (FANOVA) models 
and its relation to AMMI models  
A model concerning the evaluation of several 
treatments or genotypes in several 
environments is given by: 

yij =µ + gi +ej + ge ij +ε ij   
where: µ, g, e, ge and ε are the fixed constant, 
genotype, environment, genotype x 
environment interaction and within 
environment error effects, respectively. The 
µ and e effects can be regarded as fixed and the 
others as random.  In the context of MET data, 
the factor analysis approach can be used to 
provide a class of structures for the variance-
covariance matrix of gij (G). The model is 
postulated in terms of the unobservable 
genotype effects in different environments: 

1

k

ij jr ir ij
r

ge fλ δ
=

= +∑  

where: geij : interaction effect of genotype i in 
environment j; λjr : loading for factor r in 
environment j; f ir : score for genotype i in 
factor r; δ ij: error representing the lack of fit of 
the model. 
 The factor analytic mixed-model is 
presented according to Smith et al. (2002). 
Applied to g genotype effects on s 
environments (Resende & Thompson 2005), 
the factor analytic model postulates 
dependence on a set of random hypothetical 
factors ( )1gx

rf  (r=1, 2,, . . . k < s) . In vector 
notation, the factor analytic model for these 
effects is 
 

1 1( ) .... ( )s g k g kg e I f I fλ λ δ= ⊗ + + ⊗ +
 

where: λ r
 (

 
sx1)

  : loadings or weights of the 
factors in environments; δ ( gs x1): vector of 
residuals or lack of fit for the model (also 
called vector of specific factors). 
In a compact way, the model is:  

ge = Λ⊗I f +δ s g , 
where:  

Λ ( sxk) = [λ1.... λk] ;f (gk x1) = (
1f ′  ,…, 

kf ′ )’ 
The joint distribution of f and δ is given by 
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where: Ψ=diag(ψ1....ψ. p ) ; ψ i : specific 
variance for the ith trial. The variance matrix for 
genotype effects on environments is given by 
var[ ] ( ) var[ ]( ' ) var( )s m mge I f I δ= Λ ⊗ Λ ⊗ +   
               = ( ) mIψ′ΛΛ + ⊗      
The model for genotype effects in each 
environment leads to a model for G in which: 

2

1
jj

k

g jr j
r

σ λ ψ
=

= +∑  genotype variance in 

environment j; 

' '
1

jj

k

g jr j r
r

σ λ λ
=

= ∑  genotype covariance between 

environments j and j’; 

'

2 2

' ' '
1 1 1

/ ( )(
jj

k k k

g jr j r jr j j r j
r r r

ρ λ λ λ ψ λ ψ
= = =

= + +∑ ∑ ∑
 

: genotype 

correlation between environments j and j’ 

The equation for gs has the form of a (random) 
regression on k environmental covariates λ1.... 
λk  in which all regressions pass through the 
origin. It may be more appropriate to allow a 
separate (non-zero) intercept for each 
genotype. This is equivalent to the model with 
genotype main effects, g, and a k-factor 
analytic model for g x e interaction. Then, the 
expression for gs  turns to 
gs =(1s ⊗I g )g + ge =(1s ⊗I g )g +(Λ⊗I g ) f 
+δ . 
Vector g has mean zero and variance σ g 2

 I or 
σ g 2

 A, where A is a genetic relationship 
matrix. The model can be written as 
gs =(σ g1s ⊗I g ) f0 + (Λ⊗I g ) f +δ 
 = (Λg ⊗Ig ) fg +δ , 
where: 

( 1)

0 0[ 1 ]; ; ( );s k

g s g

g

g
f f f fσ σ

σ
+ ′ ′ ′Λ = Λ = =  

 Thus the model with genotype main effects 
and a k-factor analytic model for g x e 
interactions is a special case of a (k+1)-factor 
analytic genotype effects in each environment, 
in which the loadings in the first set are 



 
Jurnal ILMU DASAR Vol. 12 No. 2. 2011 : 123 – 131  125  
 
 

 

constrained to be equal.  The feature that 
distinguishes equations for g, from standard 
random multivariate regression problems is that 
both the covariates and the regression 
coefficients are unknown and therefore must be 
estimated from the data. 
 The AMMI model has become a popular 
method for analysing MET data. The model is 
a fixed-effects model with (additive) main 
effects for genotypes and environments and 
multiplicative terms for the interaction. The 
latter are obtained using a singular value 
decomposition (SVD) of the G× E interactions. 
Let  Uve denote the m × p matrix of G × E 
interactions. In AMMI, Uve is decomposed as 
Uve = ALB*’, where A  and B* are m × t and  p 
× t matrices, such that A’A = It = B*’ B*, L = 
diag( l1…lt), and t is the rank of  Uve.  
Defining B=B*L, the decomposition can be 
written as  

Uve = AB’ = 1

t

r r
r

a b
=

′∑
 

 
The columns of A (ar of m×1) are called the 
genotype scores and the columns of  B (br of 
p×1) are the environment loadings. As in factor 
analysis, the aim of the AMMI approach is to 
account for structure in the genetic effects 
using the minimum number, k, of 
multiplicative terms. Isolation of the first k 
terms in  
var[ ] ( ) var[ ]( ' ) var( )s m mge I f I δ= Λ ⊗ Λ ⊗ +  

Then we have: Uve = 1

k

r r
r

a b
=

′∑
+ 1

t

r r
r k

a b
= +

′∑
 

                               = 1 1A B′
 + 2 2A B′

 
Where A1 and B1 are m × k and p × k 
matrices, respectively. Thus, in the AMMI 
model, the G × E interactions are modeled as 

uve = (B1 ⊗ Im)a + eg 

where a = vec[A1] = ( 1a′
… 1a′

) of mk x 1vector 
and eg of mp x 1 are the residual G × E 
interactions that remain if not all the t 
components of the SVD are used. The latter are 
assumed to be independent with constant 
variance. There is a clear connection between 

 uve = (B1 ⊗ Im)a + eg 
and the k factor-analytic model for the G × E 
interactions, namely: 

uve = (Λ ⊗ Im)f + δ 
There is a correspondence between the 
environment loadings for the two models (B1  

and Λ) and the genotype scores (a and f). Thus, 
the k factor-analytic model is a random-effects 
analogue of the AMMI model. The model is 
then a multiplicative model of environment and 
genotypes coefficients (known as loadings and 
factorial scores, respectively). Here,  the 
FANOVA models is analogue to AMMI 
models. 
 In historical perspectives the FANOVA 
model is proposed by Gollob in 1968, 
combines aspects of analysis of variance and 
factor analysis.  Among others, Gabriel (1978)  
considered models like FANOVA and 
estimated the unknown parameters using a least 
squares fit.  AMMI then developed afterwards.  
Cornelius et al. 1996 say that Gaugh & Zobel 
renamed the Gollob FANOVA model as 
AMMI model.  
 
The RAR estimator 
As usual, the n×p data matrix Y contains the 
individuals (cases, objects) in the rows and the 
observed variables (characteristics) in the 
columns. The variables are already 
standardized to have zero location and unit 
spread. A factor score is denoted as fil. The ith 
score vector is given by fi = (fi1, . . .  , fik)T, 
while the jth loading vector is  
λj = (λj1 , . . . , λjk) T.  Both the loading 
vectors and the score vectors are unknown. 
Denote by θ =  (f1 T, . . .  , fn T, λ1 T , . . . , λp 
T) the vector of all scores and loadings, and let  

1
ˆ ( )

k T T

ij ii ij i j j ii
y f f fθ λ λ λ

=
= = =∑  

be the fitted value of yij . By choosing θ such 
that the fitted and the actual values of the data 
matrix are close together, we define estimates 

 the score vectors and 
ˆ

jλ
 for the loading 

vectors. The fitted data matrix Ŷ  can then be 

decomposed as ˆ ˆ ˆ TY F= Λ   where the rows of 
F̂  are the estimated scores and the rows of  
ˆ TΛ are the estimated loadings. 

Observe that the rank of Ŷ  is at most k < p, 
while the rank of Y is typically p. The least 
squares (LS) approach is to minimize the sum 
of squared residuals: 

2

1 1
ˆ ˆarg min ( ( ))

n p

LS ij iji j
y y

θ

θ θ
= =

= −∑ ∑
 

The resulting Ŷ can be seen as the “best” (in 
the least squares sense) approximation of the 
data matrix Y by a rank k matrix.  
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The Eckart-Young theorem (Gower & Hand 
1996) says that this best fit can be obtained by 
performing a singular value decomposition  Y 
= UDV T of the data matrix. By replacing all 
singular values in D by zero except for the k 
largest ones, one obtains Dk and finally Ŷ  = 

UDkVT. By taking F̂ nU=  and 
ˆ /kVD nΛ = we obtain the so-called 

Principal Component solution to the FA 
problem (cfr. Johnson and Wichern 1998). 
Moreover, the sample covariance matrix of the 
estimated score vectors equals ˆ ˆT

kF F I=  
which is consistent with the assumption Cov(F) 
= Ik.   
It is important to note that the estimates F̂  and 
ˆ TΛ  are only specified up to a linear 

transformation. Since 1ˆ ˆ ˆ( )( )T TY FT T −= Λ for 
any non singular k by k matrix T, it follows that 
ˆ TFT and 1ˆ T −Λ attain the same value for the 

objective L̂Sθ . However, the fitted values Ŷ  
are uniquely defined. Moreover, if we add the 
restriction that the estimated covariance matrix 
of the score vectors needs to be the identity 
matrix, then the estimates F̂  and ˆ TΛ are 
specified up to an orthogonal transformation, 
making the matrix ˆ ˆ TΛΛ uniquely defined. 
 Since the LS criterion gives too much 
weight to large residuals, a first idea is to use 
the L1 criterion (or Least Absolute Deviations 
criterion) instead, which is known to give a 
very robust additive fit to two-way tables 
(Terbeck & Davies 1998). This yields the 
estimator   

1 1 1
ˆ ˆarg min | ( ) |

n p

L ij iji j
y y

θ

θ θ
= =

= −∑ ∑  

For the optimal F̂  and ˆ TΛ , it must hold that 

1̂f minimizes 
1

ˆ| |p T
ij i jj

y f λ
=

−∑  and ˆ
jλ  

minimizes 
1

ˆ| |n T
ij i ji

y f λ
=

−∑  
Therefore, instead of minimizing both sums in 

L1 criterion at the same time, one fixes an index  
j and scores fi and selects the λj to minimize 

1
| |

n T

ij i ji
y f λ

=
−∑  

 
The above problem is now linear instead of 
bilinear and can easily be solved with a Least 
Absolute Deviations regression algorithm. One 
sees immediately that minimizing 

1
| |

n T

ij i ji
y f λ

=
−∑ consecutively for j = 1, . . . , 

p corresponds to minimizing L1 criterion for 
fixed scores. Analogously, for fixed loadings 
λj, finding the fi minimizing 

1
| |p T

ij i jj
y f λ

=
−∑  (for each i = 1, . . . , n in 

turn) corresponds to minimizing L1 criterion 
when the loadings are given. Alternating 

1
ˆ| |n T

ij i ji
y f λ

=
−∑ and 

1
| |p T

ij i jj
y f λ

=
−∑  

leads to an iterative scheme of alternating 
regressions. Note that the value of the criterion 
in L1 decreases at each step. 
 Similar algorithms, but based on alternating 
classical least squares regressions and 
generalized linear models, see de Falguerolles 
& Francis (1992), Gabriel (1998) for 
generalized bilinear models. 
 Unfortunately, L1 regression is sensitive to 
leverage points. If outlying score or loading 
vectors are present, the L1 regressions can be 
heavily influenced by them. By downweighting 
these leverage points we obtain a weighted L1 
regression, resulting in the RAR estimator 

ˆ( )RARθ below,  

1 1
ˆ ˆarg min ( ) ( ) | ( ) |

n p

RAR i j ij iji j
w v y y

θ

θ θ θ θ
= =

= −∑ ∑
One single objective function estimates F̂  and 
ˆ TΛ  simultaneously from the rows and columns 

of Y. The result of  R̂ARθ  used Robust 
Alternating Regressions to compute it. The 
estimator will not be misled by outlying 
observations.   
 The row weights,  ( )iw θ  are defined by 

2

;0,95

2
( ) min 1, k

i

i

X
w

RD
θ =

 
 
 

 for i = 1, . . . , n 

where χ2
k;0.95 is the upper 5% critical value of a 

chi-squared distribution with k degrees of 
freedom, and 

( ) ( ) ( )( )( )1T

i i iRD f T F C F f T F−
= − −  

for i = 1, . . . , n  are robust distances 
(Rousseeuw & van Zomeren 1990) computed 
from the collection of score vectors 

{ }| 1iF f i n= ≤ ≤  k-dimensional space. Such 
weights were used by Simpson et al. (1992) 
and yielded stable results. The robust 
multivariate location and scatter estimators T 
and C are taken as the location and scatter part 
of the MVE estimator. The MVE estimator was 
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chosen here since it performs well as an outlier 
identifier (Becker & Gather 2001). 
Analogously, the set of column weights vj is 
defined using the loading vectors. Note that, 
since the true loadings and scores are 
unobserved, wi and vj depend on the unknown 
parameter vector θ. 
 
The RAR algorithm 
The RAR estimator can be approximated by an 
alternating algorithm, as outlined below (Croux 
et al. 2003). 
 Step 0 is used to obtain invariance with 
respect to a change of measurement units, the 
data are first scaled in a robust way: 

( )
( )

ij i ij

ij

i ij

y med y
y

MAD y

−
←  

where MAD stands for the Median Absolute 
Deviation. Note that orthogonal or affine 
equivariance properties are not necessary in a 
factor model. This initial standardization 
corresponds with a correlation matrix based 
FA.  
 Step 1 is starting values. First, a robust 
principal component analysis (PCA) procedure 
is performed. The resulting scores are then 
taken as starting values ( )0

îf  for the factor 
scores. We use the projection pursuit (PP) 
based estimator of  Li & Chen (1985), 
implemented as in Croux and Ruiz-Gazen 
(1996). This PP-based method is fast to 
compute, can deal with p > n, and is highly 
robust. Moreover, this approach allows one to 
compute just the first k principal components 
(the only ones that are needed here), which 
reduces the computation time even further. 
Using classical PCA in this first stage would 
slow down the convergence considerably, and 
could lead to a nonrobust FA when there are 
many outliers. Alternatively, one could take 
several random starting values, which could 
help to check for a local versus global 
optimum. But the latter approach will increase 
computation time significantly. In any case, 
experiments have shown that the choice of the 
starting values is not too crucial for finding a 
good approximation. 
 Step 2:  The iteration process. Now 
suppose that the iteration process has reached 
step t (t ≥ 1) of the algorithm, and the ( )1ˆ t

if
−  are 

available. 

* First compute the row weights wi
(t) , which 

downweight outliers in the set of estimated 
score vectors ( ){ }1ˆ | 1 in t k

if i n− ≤ ≤  . 
   Then compute 

( ) ( ) ( )1

1
ˆˆ arg min | |

k

nt t T t

j i ij ii
w y f

λ

λ λ −

=
∈

= −∑


for  j = 

1, . . . , p: In this part of the procedure, one 
needs to perform an L1 fit p times (and this will 
be the case at every iteration step). Note that 
the loadings are estimated one at a time, which 
turned out to be more convenient for the 
implementation of the algorithm. Fortunately, 
very efficient algorithms for L1 regression 
exist (Bloomfield & Steiger 1983), so this takes 
little time. Note that the weights wi

(t) , only 
need to be computed once every iteration step. 
They require computation of a robust scatter 
estimator in the factor space, which is usually 
of a low dimension k. 
* We analogously compute column weights 
vj

(t) , which downweight outliers in the set of 
estimated loading vectors 

( ){ }ˆ | 1 in t k

i j pλ ≤ ≤  .  Then compute 
( ) ( )

1
ˆ ˆarg min | |

k

pt T t

i i ij jj
f

f v y f λ
=

∈

= −∑


for i = 1, . 

. ., n.   
* The values of the objective function of  R̂ARθ  
computed for the estimates obtained in step t−1 
and step t are compared. If there is no essential 
difference in the objective function, the 
iterative process is stopped and we set 

( )ˆ ˆ t

i if f=  for 1 i n≤ ≤  and ( )ˆ ˆ t

j jλ λ=   for 
1 j p≤ ≤ . If not, Step 2 is repeated. 
 Step 3:  Orthogonalization. This last 
step is optional and will not alter the fitted 
values ˆ ˆ ˆ TY F= Λ . We compute a robust 
estimator ˆ

f∑ of the covariance matrix of the 

estimated scores { }ˆ | 1if i n≤ ≤ . Since the 
scores only have k  dimension, where k is 
small, the matrix ˆ

f∑ can be computed quickly. 

We compute îf by the reweighted MCD 
estimator with 25% breakdown value, using the 
FAST-MCD algorithm of Rousseeuw and van 
Driessen (1999). The breakdown value 25% for 
the MCD has been chosen since this combines 
robustness with efficiency (see e.g. Croux & 
Haesbroeck    1999).   Afterwards   we    set 



 
128 Handling Outlier.......... (Alfian Futuhul Hadi) 
 

1
2ˆˆ ˆ

fF F
−

← ∑  and  
1

2ˆˆ ˆ
fΛ ← Λ ∑  

The effect of the above transformation is that 
the robust covariance matrix of the estimated 
scores is now an identity matrix, which mimics 
the model condition ˆ( ) kCov F I= .  Another 
effect is that the biplot representation of the n 
cases (see Step 4) will show no correlation 
structure, as is common practice in the biplot 
literature (Gower & Hand 1996). 
 Step 4:  Residuals, uniquenesses, 
biplot. The residuals are obtained as 

ˆ ˆˆ ˆ T

ij ij ij ij i jy y y fε λ= − = −  and can be plotted 
versus (i, j) in the horizontal plane. This 
residual plot is very useful for detecting 
outliers. From the residuals the uniquenesses 
can be estimated as 2ˆ ˆ( ( ))j j ijMADψ ε= . In the 
common case k = 2 one can represent the 
individuals by 1 2

ˆ ˆ( , )i if f  and the variables by 

( )1 2
ˆ ˆ,j jλ λ  in the same 2D plot, called the 

biplot.  
 It also allows to perform alternating 
regression using other regression estimators, 
like M-estimators or the highly robust Least 
Trimmed Squares (LTS) and Least Median of 
Squares (LMS) estimators. It is even possible 
to execute the algorithm with the nonrobust 
Least Squares regression estimator, yielding 
the same result as the classical approach of 
Gabriel (1978) based on the singular value 
decomposition. Alternating regression using 
the LMS algorithm was already considered by 
Ukkelberg & Borgen (1993). However, using 
the LMS yields a very time consuming 
algorithm. In our experience, the RAR 
estimator gave the most satisfying factor 
analysis method with respect to computation 
time, robustness, and stable convergence of the 
algorithm. Although no proof of convergence 
exists, many simulations and examples have 
shown its good numerical and statistical 
performance. 
 The RAR procedure required the choice of 
several auxiliary robust estimators and a 
weighting function. Most of these choices are 
standard, and simulations for other robust 
choices led to essentially identical results. 
 
 
 

  

RESULTS AND DISCUSSION 
 
Theorical costruction: developing robust 
AMMI by applying RAR to the FANOVA 
models 
The standard model for a two-way table is the 
ANOVA model 

ijjiij egy δ+++= μ  

where µ is called the overall mean, gi 
represents  genotype effect (the row) and ej  
environment (the column) effect. In a classical 
setup, the row and column effects are assumed 
to have zero mean. The terms δij can either be 
seen as residuals or as interaction terms 
between rows and columns. That expression is 
called an additive model. It is however quite 
possible that the interaction terms δij still 
contain some structure that can be described by 

a factor model  
1

k

ij jr ir ijr
fδ λ ε

=
= +∑ yielding 

the overall model 

1

μ
k

ij i j jr ir ij
r

y g e fλ ε
=

= + + + +∑   

The first idea would be to proceed sequentially 
by estimating the additive model first, and 
afterwards performing a factor analysis on the 
residuals. But better fits can be obtained by 
estimating all parameters jointly.  For the least 
squares fit there is no difference between the 
simultaneous and the sequential approach, but 
this is no longer true for the robust fits. 
Therefore we will estimate additive and 
multiplicative terms simultaneously. 
 The RAR estimator for the FANOVA 
model was defined in previuos section. Denote 
θ as the vector collecting the scores, loadings, 
row and column effects and the overall effect 
µ. In order to estimate the (k + 1)(n + p) + 1 
unknown elements of θ  from the np available 
data, we can use the RAR estimator : 

1 1
ˆ ˆarg min ( ) ( ) | ( ) |

p n

RAR j i ij ijj i
v w y y

θ

θ θ θ θ
= =

= −∑ ∑
The weights wi and vj (defined in previous 
section) are downweighting outlying scores and 
loadings in the k-dimensional spaces of scores 
and loadings. To uniquely identify the 
parameters in yij, the function R̂ARθ  will be 
minimized under the constraints: 
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med( ) med( ) 0i j
i j

g e= =   and 

1 1med( ) med( ) 0i
i j

jf λ= =  for 1, 2, ,i k=   

Those constrains are consisten with robust 
approach.  The algorithm to compute the RAR 
estimator in FANOVA models is based on 
alternating regressions, and is almost identical 
to the iterative scheme outlined before (see The 
RAR Algorithm section). The only difference 
is that, it is nolonger working with regression 
through the origin, intercepts need to be 
estimated. 
 
Numerical example: fitting robust AMMI 
models by robust alternating regression  
The data we will use is national research 
concucted by Indonesian National Consortium 
of Rice (INCR) in cooperation with Indonesian 
Centre for Rice Research in 2008. The aims of 
this research was evaluating the phenotypic 
performance of rice from the latest generation 
in the different environment.  
 There are 11 cultivars evaluated at 20 
environments. There are 3 cultivars from 
BATAN,4 cultivars from ICRR, 2 cultivars 
from Biogen, and 2 cultivars from IPB, with 3 
varieties to compare (Ciherang, Inpari1, 
Cimelati).  It used 3 plots of replication for 
each cultivar in each environment, sized in 4 m 
x 5 m.  We will used two  
way table of genotype × environment 
interaction, the cell was median of 3 plots of 
replication. 
 There were no sufer outler in the data, only 
one outlier identified in the row effect (Figure 
2).  So it can be predicted that the result will be 
sligthly different with the leatsquare criterion. 
From Figure 1, it can be say that  L4 have 
relatively largest variance.  The genotype 
which coordinates near the  
centre point (0,0) is clustered as a stable 
genotype, so G3, G8, G4, G12, and G14 are 
relatively more stable than other genotypes.  
When there were no sufer outlier then the 
robust methods give the slightly different result 
from the least square ones.   
 

Figure 2 shows that only one observation that 
suspected to be an outlier in column effect. 
And its downweigthted alraeady as shown in 
Tabel 1, that was in the L4.  The residual plot 
(Figure 3) shows, that it is randomly distributed 
by row and column way.   
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Figure 1. Biplot of G × E interaction of robust 

FANOVA models . (factor 1 49.43%, 
cumulative 2 factor 53.76%). 
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Figure 3. Residual plots of robust FANOVA 

models. 
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Figure 2. The boxplot of row (environment) and column (genotype) effect in INCR 2008 data. 
 
 

Tabel 1. Row and column downweigth to the outlier(s). 
Row Weight: 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Column Weight: 
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 

1 1 1 0.698925 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
 

CONCLUSION 
 
FANOVA model of Gollob combines aspects 
of analysis of variance and factor analysis and 
estimated the unknown parameters using a least 
squares fit.  AMMI then developed afterwards.   
Gaugh & Zobel renamed the Gollob FANOVA 
model as AMMI model. AMMI model 
combines a univariate technique (ANOVA) for 
the main effects and a multivariate technique 
(PCA and SVD) for G × E effects. While in 
handling the non-homogeneity in mix-models 
sense, one may use a model called factor 
analytic multiplicative.  Factor analitic models 
is equivalent with AMMI mixed model. SVD is 
venurable to the outliers, so that the 
construction of robust model is a promising 
subject to be investigated.  In this paper, we 
will present of handling outlier in 
multiplicative model by robust approach of 
alternating regression algorithm. 
 Basically, the idea of constructing robust 
FANOVA model was to proceed sequentially 
by estimating the additive effect by robust 
model first, and afterwards performing a robust 
factor analysis on the residuals. But this is no 
longer true for the robust fits.  
 
 

Therefore we will estimate additive and 
multiplicative terms simultaneously by 
applying Robust Alternating Regression in 
FANOVA model.  RAR FANOVA model is 
are downweighting outlying scores and 
loadings in the k-dimensional spaces of scores 
and loadings, and uniquely identify the 
parameters in yij, the function  will be 

minimized under the constraints that are 
consisten with robust approach of the median 
of parameters.  When there were no sufer 
outlier, then the robust methods give the 
slightly different result from the least square 
ones. 
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