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ABSTRACT 

The use of factor analysis methods to reduce variable dimensions is generally known and has been 

used in various disciplines. The two famous extraction methods of factor analysis are principal 

component analysis and maximum likelihood.  This study aimed to compare both, principal 

component analysis and maximum likelihood. By their constructed matrix correlation, applied to 

bank financial ratios. The study is developed from an initial set of 22 ratios of healthy indexed 

banks. The use of bank financial data aims to identify the structure of the financial ratio of healthy 

indexed banks. There are 10 variables satisfying the criteria of factor analysis techniques to be 

considered in the analysis. Both principal component analysis and maximum likelihood suggest 

three factors that can be used to represent 10 variables. 

Keywords: factor analysis; principal component analysis; maximum likelihood; financial ratios; 

bank health.  
 

INTRODUCTION 

The use of factor analysis methods to reduce 

variable dimensions is generally known and 

has been used in various disciplines. 

Describing covariance among many variables 

into few underlying but unobservable random 

quantities named factors  is the essential 

motivation of factor analysis (Johnson & 

Wichern, 2007). The main idea of factor model 

is being motivated by argument that variables 

can be classed by observing their correlations. 

A group of variables is highly correlated 

among themselves and relatively has low 

correlations with other variables in a different 

group. Then it is plausible that observation of 

correlation is in charged by the group. Where 

the group describe  a factor or single 

underlying construct (Everitt, 2005; Härdle & 

Simar, 2019). 

Several extraction methods are available in 

some statistical application, such as Principal 

Components, Generalized Least Squares, 

Unweighted Least Squares, Principal Axis 

Factoring, Maximum Likelihood, Alpha 

Factoring and Image Factoring. Among these 

methods, the principal component (PC) method 

and the maximum likelihood (ML) method is 

the most popular ones. It is always better to try 

more than one method of solution. A consistent 

solution makes factor model fit for the problem 

at hand despite using several different methods 

(Rencher, 1998). 

Comparison between the two extraction 

methods is our main focus in this study. In 

achieving this objective, we apply those two 

methods into banks financial ratios. Many 

researcher shows that PC and/or ML factor 

analysis could be applied to financial ratios. 

Ratio analysis is a very powerful analytical tool 

to measure the performance of an organization. 

Painting the financial forecast of the business 

and defining company’s health is purpose of 

the financial ratios (Joliffe, 2010). 

Several papers that discussed the principal 

component analysis and / or maximum 

likelihood are about: selecting significant 

factors by noise addition method (Dable & 

Booksh, 2001); estimating population density 

from chord-length delay (Grover, Martha A.; 

Barthe, Stephanie C.; Rousseau, 2009); 

estimating frequency response functions in 

single input single output in the presence of 

additive noise (White et al., 2006); analyzing 

incomplete multivariate data (Ho et al., 2001); 

comparing between PCA and ICA (Bugli & 

Lambert, 2007); and modeling individual 

growth (Lehmann et al., 2010). 

FACTOR ANALYSIS 

The most important concept for factor analysis 

is that   observed random variables   ,   ,... , 

   can be defined  as linear functions of 

        called common factors. If   ,   ,... , 

   are the variables and   ,   ,...,    are the 

factors, then (Everitt, 2005; Härdle & Simar, 

2019; Rencher, 1998) 

                             

                             

.                          

      (1) 
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Where                   ;    

           are constants known as loading 

factors,   ,               are error terms, 

sometimes called unique factors (due the fact  

   is ‘unique’ to    , while  the    are 

‘common’ to several    ), and    ,     

           are mean of   . Equation above can 

be written in matrix form as 

                 (2) 

These are number of suppositions related 

with the factor model, as follows: 

F and e are independent, Cov ( ,  ) = 0 

                 
      ,          where   is 

diagonal matrix 

Covariance structure for X is implied by the 

orthogonal factor model. From the model in 

(2), we can meet the covariance of X, Σ as 

(                           
          =                          

     (3) 

so that 

   = Cov(X)  

= E(           
=  [                           ] 
=                           

       

=                        (4) 

PRINCIPAL COMPONENT ANALYSIS 

From a random samples   ,   ,... ,   , we 

acquire the sample covariance matrix 

S and afterward we endeavor to dicover an 

estimator  ̂ that will approximate the 

fundamental expression (4) with S in place of   

(Everitt, 2005; Härdle & Simar, 2019; Joliffe, 

2010; Rencher, 1998): 

  =  ̂ ̂   ̂   (5) 

In principal component analysis, we neglect 

 ̂ and factor   into    ̂ ̂  

In order to factor S, we use spectral 

decomposition, 

          (6) 

where   is a diagonal matrix with the 

eigenvalues θ1, θ2,…, θp of   on the diagonal 

and C is an orthogonal matrix constructed with 

normalized eigenvectors (  
     ) of   as 

columns. To finish factoring      into the 

form  ̂ ̂ , considering the eigenvalues θi of the 

positive semidefinite matrix S are all positive 

or zero, we are able to factor D into D
1/2

D
1/2

. 

With this factoring of D, we can rewrite S to be 

            S       
                                

    
 

    
 

                   (7) 

Equation (7) is of the form    ̂ ̂ , but we 

don’t define  ̂ to be CD
1/2

 because CD
1/2

 is  

   , and we are seeking a  ̂ that is     

with    . We therefore define D1 = diag(θ1, 

θ2, . . . , θm) with the   largest eigenvalues 

θ1>θ2, . . . ,> θm and C1 = (c1, c2, . . . , cm) 

containing the corresponding eigenvectors. We 

then estimate   by the first m columns of CD
1/2 

 ̂      
   

  √     √       √          

(8) 

MAXIMUM LIKELIHOOD 

Maximum likelihood estimate loading factors 

and specific variances by the necessary 

assumption of common factors F and the 

specific factors e can be assumed to be 

normally distributed. Since     and     are 

jointly normal, the observations       

        . are then normal, and the likelihood 

is (Härdle & Simar, 2019; Rencher, 1998) 
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(9) 

 

Which relies on L and   through   = LL' 

+  . This model is as yet not well defined, 

because of orthogonal transformations made 

possible the multiplicity of choices for L. 

making L to be well defined is possible by 

applying computationally convenient 

uniqueness condition          as diagonal 

matrix. Numerical maximization of (9) is way    

maximum likelihood estimates  ̂ and  ̂. 

Recently, there are many efficient computer 

programs to get these estimations rather easily 

(Härdle & Simar, 2019; Joliffe, 2010; Rencher, 

1998). 

BANK HEALTH 

The purpose of the Bank's Health Assessment 

is to determine whether the bank is in a very 

healthy, healthy, fairly healthy, and unhealthy 

condition. This assessment is done by 

examining financial ratios. Financial ratio 

analysis is a comparative analysis between two 

elements of financial statements that show 

financial health at a certain time. It reflects 

bank’s condition in certain time.  
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Company’s health is assessed from five 

major aspects such as capital, assets quality, 

management, earning, and liquidity. Some 

author offer a special ratio based on the type of 

organization. There are several kinds of 

financial ratios derived from that major aspect. 

As an example, financial ratios for capital 

aspect, it can consists of capital adequacy ratio, 

core capital to total capital, and capital to total 

asset (Ardiningsih, 2001).  

VARIABLES AND DATA 

The variables in this study were 22 financial 

ratios that used to measure the health of banks. 

It is secondary data from the Indonesian banks 

health research in the year 2016 conducted by 

the research institute PT. Bali Data Analysis. 

The data was financial ratios that examined to 

index banks into very healthy, healthy, fairly 

healthy and unhealthy. PT. Bali Data Analysis 

conducted their research using Camels 

Analysis that widely used among economic 

researcher. 

Sample data taken from quarterly financial 

ratios from 31 banks indexed very healthy and 

healthy in 2016. Then, total sample data 

examined in this article is 124. Those financial 

ratio variables are shown in Table 1.  

Table 1. Financial Ratio Variable 

Notation Financial Ratio 

   Capital Adequancy Ratio 

   Tier 1 to total capital 

   Capital to total asset 

   Non Performing Loan to gross loan 

   Non Performing Loan net 

   
Loan loss provisions to productive 

asset 

   Loan loss provisions to gross loan  

   
Loan loss provisions minimum 

criteria percentage 

   Return on equity 

    Return on asset 

    Operational and cost efficiency ratio 

    
Operational cost non interest to total 

asset 

    
Operational cost non interest to 

interest income 

    Net interest margin 

    Funding cost 

    Fee based income to total income 

    Low cost deposit 

    Loan to deposit ratio 

    Liquid asset to total asset 

    Liquid asset to customer deposit 

    Interbank ratio 

    Loan to funding ratio 

Validity test of research data is done by 

examining the value of measure sampling 

adequacy (MSA), Kaiser Meyer Olkin value 

(KMO), and Bartlett’s test of sphericity. Those 

validity tests are to confirm that collected data 

have patterned relationships.  

Measure sampling adequacy (MSA) is a 

statistical test to measure a variable that can be 

predicted by other variables. This test is done 

by comparing the correlation of the observed 

variable pair with the partial correlation. The 

value of the MSA ranges from 0 to 1 with 

significant value is 0.5. This test is an index of 

each variable that explains whether the data in 

the study is sufficient to make the variables 

partially interrelated. While MSA analyzed 

adequacy of each variable individually, 

Bartlett’s test of sphericity and KMO are 

statistical tests to analyze the whole variables. 

METHODS 

In this study we use ‘eigen value which is greater 

than 1’ to determine how many factor to be retained. 

Then, we use the communalities, factors retained, 

variances explained and constructed correlation 

matrices to compare these two methods of 

extraction. 

RESULTS AND DISCUSSION 

At first, the data are tested by checking the 

value of MSA. This is done by checking the 

diagonal of anti-image correlation. From 22 

observed variables, there are just 10 variables 

satisfying the criteria of MSA while the other 

12 variables did not satisfy the criteria. It 

means we exclude those 12 variables from next 

step of research. Another criteria are value of 

KMO and Bartlett’s test of sphericity. The 

value of these two criteria obtained by SPSS 

and shown at Figure 1. The value of KMO and 

Bartlett’s test of sphericity of 10 variables 

consecutively are 0.686 and 569.858, which let 

us to analyze data into factor analysis.  

 

 

 

 

Figure 1. KMO and Bartlett’s test of sphericity 

The ten variables that satisfying the criteria 

are    ,   ,   ,   ,    ,    ,    ,    ,    , and 

   . These variables enter the main step in the 

analysis i.e. extraction. Parameters used to 

measure extraction results include 
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communalities, factors retained, variances 

explained and constructed correlation matrices.  

Table 2 shows the communalities retained 

by both methods. Communality indicates 

variance of observed variable explained by 

constructed factor. The number of 

communalities using Principal Component that 

larger than those of the one using Maximum 

Likelihood is seven out of ten. Therefore, using 

this comparison, PC method performs better 

than ML method. 

Table 2. Communalities 

Variable PC ML 

   0.636 0.598 

   0.684 0.593 

   0.796 0.999 

   0.836 0.315 

    0.710 0.999 

    0.708 1.000 

    0.797 0.571 

    0.473 0.320 

    0.638 0.374 

    0.486 0.131 
  

There are three Eigen values in Table 3 

which are greater than 1, retained by both 

extractions method, then three factors retained 

in this study. PC gives total variance 67.65% 

by retaining 3 factors, with variance explained 

by Factor 1, Factor 2, and Factor 3 

consecutively are 37.77%, 19.87%, and 

10.00%. While ML gives total variance 

58.97% by retaining 3 factors, with variance 

explained by Factor 1, Factor 2, and Factor 3 

consecutively are 24.29%, 18.73%, and 

15.95%. 

Table 3. Eigen Value and Explained Variance 

by Both Methods 

 

 

 

 

The last criteria used to compare PC and 

ML is using constructed correlation matrices. 

The more similar constructed correlation 

matrices to R will be the better extraction 

methods among them.  But this is also equal in 

stating the bigger p-value in testing the equality 

of the constructed matrix and the original one, 

will be the better extraction method. Testing 

the equality of Correlation matrices has been 

proposed by several authors (Brien, 1988; 

Grover, Martha A.; Barthe, Stephanie C.; 

Rousseau, 2009; Ho et al., 2001; Modarres & 

Jernigan, 1992; Taylor & Jennrich, 2012; 

White et al., 2006).  

The original correlation (R), PC constructed 

correlation (
PC

R ), and ML (
ML

R ) constructed 

correlation matrices are written in equation 10, 

11, and 12 respectively. 

 

 

  

 

 

 

 

 

 

 

 

The result of testing the equality between 

PC constructed correlation (
PC

R ) and the 

original correlation (R) is that the chi-square 

statistic = 36.76 with degrees of freedom = 45 

and p-value = 0.80417, while the result of 

testing the equality between ML constructed 

correlation (
ML

R ) and the original correlation 

(R) is that the chi-square statistic = 14.23 with 

degrees of freedom = 45 and p-value = 

0.99999.  With these criteria, therefore, we 

prefer ML extraction method than PC 

extraction method. 

CONCLUSION 

Principal component factoring acquisition is 

greater than maximum likelihood factoring on 

cumulative proportion of the total sample 

variance explained. This is normal because this 

criterion typically favors principal component 

factoring. Relation between principal 

component and factor analysis is obtaining 

loadings, which have, by design, a variance 

optimizing property (Bugli & Lambert, 2007). 

PC extraction method is preferred in terms of 

cumulative proportion of variance sampling 

and communalities, while ML extraction 

method is better in terms of constructed 

correlation matrices than PC extraction 

method. 

Factor 

PCA ML 

Eigen Value Variance (%) Cumulative (%) Eigen Value 
Variance 

(%) 
Cumulative (%) 

1 3.777 37.772 37.772 2.429 24.294 24.294 

2 1.987 19.870 57.643 1.873 18.733 43.027 

3 1.001 10.009 67.651 1.595 15.950 58.977 

 

𝑅 =

 
 
 
 
 
 
 
 
 

1.000
0.494
0.758
0.082
0.141
0.369
0.262
0.257
0.444

 0.239   

0.494
1.000
0.531
0.182
0.367
0.657
0.401
0.327
0.428

 0.151   

0.758
0.531
1.000

 0.022   
0.137
0.296
0.188
0.564
0.272

 0.291   

0.082
0.182

 0.022   
1.000
0.540
0.210
0.204

   0.161   
0.446
0.015

0.141
0.367
0.137
0.540
1.000
0.237
0.543
0.080
0.489
0.160

   

0.369
0.657
0.296
0.210
0.237
1.000
0.638
0.208
0.453
 0.111

    

0.262
0.401
0.188
0.204
0.543
0.638
1.000
0.028
0.501
0.160

0.257
0.327
0.564

   0.161   
0.080
0.208
0.028
1.000
0.163

 0.206  

0.444
0.428
0.272
0.446
0.489
0.453
0.501
0.163
1.000
0.048

 0.239   
 0.151   
 0.291   

0.015
0.160
 0.111
0.160

 0.206   
0.048
1.000  

 
 
 
 
 
 
 
 

 

𝑅 𝑃𝐶 =

 
 
 
 
 
 
 
 
 

0.639
0.613
0.697
0.086
0.188
0.478
0.284
0.505
0.377

 0.338   

0.613
0.684
0.613
0.161
0.347
0.636
0.526
0.402
0.517

 0.156   

0.697
0.613
0.796

 0.002   
0.075
0.427
0.166
0.600
0.298

 0.461   

0.086
0.161

 0.002   
0.836
0.689
0.081
0.217

 0.007   
0.531
0.006

0.188
0.347
0.075
0.689
0.710
0.360
0.504
0.000
0.626
0.133

   

0.478
0.636
0.427
0.081
0.360
0.708
0.687
0.225
0.509
0.074

    

0.284
0.526
0.166
0.217
0.504
0.687
0.797
0.005
0.565
0.298

0.505
0.402
0.600

 0.007   
0.000
0.225
0.005
0.473
0.160

 0.414  

0.377
0.517
0.298
0.531
0.626
0.509
0.565
0.160
0.638
0.033

 0.338   
 0.156   
 0.461   

0.006
0.133
0.074
0.298

 0.414   
0.033
0.486  

 
 
 
 
 
 
 
 

 

𝑅 𝑀 =

 
 
 
 
 
 
 
 
 

0.598
0.483
0.758
0.021
0.141
0.369
0.238
0.434
0.268

 0.223   

0.483
0.593
0.531
0.205
0.367
0.657
0.497
0.321
0.422

 0.128    

0.758
0.531
0.999

 0.022    
0.137
0.296
0.188
0.564
0.272

 0.291   

0.021
0.205

 0.022   
0.314
0.540
0.210
0.341

 0.006    
0.279
0.109

0.141
0.367
0.137
0.540
0.999
0.237
0.543
0.080
0.489
0.160

0.369
0.657
0.296
0.210
0.237
1.000
0.638
0.208
0.453

 0.111   

0.238
0.497
0.188
0.341
0.543
0.638
0.571
0.130
0.444
0.015

0.434
0.321
0.564

 0.006   
0.080
0.208
0.130
0.320
0.168

 0.167   

0.268
0.422
0.272
0.279
0.489
0.453
0.444
0.168
0.373

 0.008   

 0.223   
 0.128   
 0.291   

0.109
0.160

 0.111  
0.015

 0.167   
 0.008   

0.130  
 
 
 
 
 
 
 
 

 

(10) 

(11) 

(12) 
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