Spline Estimator in Multi-Response Nonparametric Regression Model

Budi Lestari ${ }^{1)}$, I Nyoman Budiantara ${ }^{2)}$, Sony Sunaryo ${ }^{2)}$, Muhammad Mashuri ${ }^{2)}$
${ }^{1)}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Jember
${ }^{2)}$ Department of Statistics, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology,

Abstract

In many applications two or more dependent variables are observed at several values of the independent variables, such as at time points. The statistical problems are to estimate functions that model their dependences on the independent variables, and to investigate relationships between these functions. Nonparametric regression model, especially smoothing splines provides powerful tools to model the functions which draw association of these variables. Penalized weighted least-squares is used to jointly estimate nonparametric functions from contemporaneously correlated data. In this paper we formulate the multi-response nonparametric regression model and give a theoretical method for both obtaining distribution of the response and estimating the nonparametric function in the model. We also estimate the smoothing parameters, the weighting parameters and the correlation parameter simultaneously by applying three methods: generalized maximum likelihood (GML), generalized cross validation (GCV) and leaving-out-one-pair cross validation (CV).

Keywords : Multi-response Nonparametric Regression Model, Penalized Weighted Least-Squares, Generalized Maximum Likelihood, Generalized Cross Validation, leaving-out-one-pair cross validation

INTRODUCTION

There are many writers who have studied spline estimators for estimating regression curve of nonparametric regression models. Kimeldorf \& Wahba (1971), Craven \& Wahba (1979) and Wahba (1990) proposed original spline estimator to estimates regression curve of smooth data. Cox (1983) and Cox \& O'Sullivan (1996) used M-type spline to overcome outliers in nonparametric regression. Wahba (1983) proposed polynomial spline to obtain confidence interval based on posterior covariance function.

Oehlert (1992) and Koenker \& Portnoy (1994) introduced relaxed spline and quantile spline, respectively. Budiantara et al. (1997) studied weighted spline estimator in nonparametric regression model with different variance. Wahba (2000) introduced some techniques for spline statistical model building by using reproducing kernel Hilbert spaces. Aydin (2007) showed goodness of spline estimator rather than kernel estimator in estimating nonparametric regression model for gross national product data. All these writers studied spline estimators in case of single response nonparametric models only.

In the real cases, we are frequently faced to the problem in which two or more dependent
variables are observed at several values of the independent variables, such as at time points. Multi-response nonparametric regression model provide powerful tools to model the functions which draw association of these variables.

Many authors have considered nonparametric models for multiresponse data. Wegman (1981), Miller \& Wegman (1987) and Flessler (1991) proposed algorithms for spline smoothing. Wahba (1992) developed the theory of general smoothing splines using reproducing kernel Hilbert spaces. Gooijer et al. (1991) and Fernez \& Opsomer (2005) proposed methods of estimating nonparametric regression models with serially and spatially correlated errors, respectively. Wang et al. (2000) proposed spline smoothing for estimating nonparametric functions from bivariate data. Lestari (2007) studied spline smoothing for estimating three responses nonparametric regression models with the same variances of errors for the same response. Lestari (2008a) developed spline estimator in biresponse nonparametric regression model with unequal variances of errors and Lestari (2008b) developed penalized weighted least-squares estimator for bivariate nonparametric regression model with correlated errors. All, except Wang et al. (2000) and Lestari (2007, 2008a, \& 2008b),
assumed that the covariance matrix is known, which is usually not the case in practice. When the covariance matrix is unknown, it has to be estimated from the data and this can affect the estimates of the smoothing parameters (Wang 1998).

In this paper, we study mathematical statistics methods for obtaining distribution of responses, and estimating the nonparametric functions and the parameters in the multiresponse nonparametric regression model. Here, we assume that the covariance parameters are unknown, and errors of the same responses have the same variances. Based on the multi-response nonparametric regression model given, we estimate multi-response nonparametric regression function by using penalized weighted least-squares. Next, we describe three methods: generalized maximum likelihood (GML), generalized cross validation (GCV) and leaving-out-one-pair cross validation (CV) to estimate the smoothing parameters, the weighting parameters and the correlation parameter simultaneously.

RESULTS AND DISCUSSION

Multi-response nonparametric regression models
Assume that data $\left\{y_{k i}, t_{k i}\right\}$ follows multiresponse nonparametric regression model:

$$
\begin{equation*}
y_{k i}=f_{k}\left(t_{k i}\right)+\varepsilon_{k i} \tag{1}
\end{equation*}
$$

where $k=1,2, \ldots, p ; i=1,2, \ldots, n_{k}$. It means that the $i^{t h}$ response of the $k^{t h}$ variable $y_{k i}$ is generated by the $k^{\text {th }}$ function f_{k} evaluated at the design point $t_{k i}$ plus a random error $\varepsilon_{k i}$. Assume $\quad \varepsilon_{k i} \sim N\left(0, \sigma_{k}^{2}\right)$ for fixed $k=1,2, \ldots, p$; and $\operatorname{Corr}\left(\varepsilon_{k i}, \varepsilon_{l i}\right)=\rho$ for $k \neq l$ and zero otherwise. It is a special case of our other paper, i.e., $\operatorname{Corr}\left(\varepsilon_{k i}, \varepsilon_{l i}\right)=\rho_{i}$, which has been submitted for an international journal

Here, for simplicity of notation, we assume that the domain of the functions are $[0,1]$ and f_{k} is element of Sobolev space W_{2}, i.e., $\quad f_{k} \in W_{2}=\left\{f: f, f^{\prime} \quad\right.$ absolutely
continuous, $\left.\quad \int_{0}^{1}\left(f^{\prime \prime}(t)\right)^{2} d t<\infty\right\}$. Our methods can be easily extended to the general smoothing spline models where the p domains are arbitrary (thus could be different) and the observations are linear functionals instead of evaluations (Wahba 1990, 1992).

Distribution of the responses

Suppose that we denote $\underline{t}_{k}=\left(t_{k 1}, \ldots, t_{k n_{k}}\right)^{T}$;
$\underline{y}_{k}=\left(y_{k 1}, \ldots, y_{k n_{k}}\right)^{T} ; \quad \underline{\varepsilon}_{k}=\left(\varepsilon_{k 1}, \ldots, \varepsilon_{k n_{k}}\right)^{T} ;$
$\underline{f}_{k}=\left(f_{k}\left(t_{k 1}\right), f_{k}\left(t_{k 2}\right), \ldots, f_{k}\left(t_{k n_{k}}\right)\right)^{T}$;
$\underline{f}=\left(\underline{f}_{1}^{T}, \ldots, \underline{f}_{p}^{T}\right)^{T}$ and $\underline{y}=\left(\underline{y}_{1}^{T}, \ldots, \underline{y}_{p}^{T}\right)^{T}$, where the superscript T refers to transpose. For for $k=1,2, \ldots, p, \quad$ let $\quad r_{k}=\frac{\sigma_{k}}{m}, \quad m=\prod_{\substack{j=1 \\ j \neq k}}^{p} \sigma_{j} ;$
$\theta=\prod_{k=1}^{p} \sigma_{k} ;$
$\gamma_{i j}=\frac{\rho}{\sigma_{k}}(i, j=1,2, \ldots, p ; k \neq i \neq j) ;$ and $J_{q S}$ be a $n_{q} \times n_{s}$ matrix with $(i, j)^{t h}$ element equal to 1 if the $i^{\text {th }}$ element of \underline{y}_{q} and the $j^{\text {th }}$ element of \underline{y}_{s} is a pair, and zero otherwise. Note that $J=I$, the identity matrix, when all observations come in pairs. By taking $E(\underline{y})$ and $\operatorname{Var}(\underline{y})$, we obtain the distribution of responses, i.e., $\underline{y} \sim N\left(\underline{f}, \theta W^{-1}\right)$, where

$$
W^{-1}=\left[\begin{array}{cccc}
r_{1} I_{n_{1}} & \gamma_{12} J_{12} & \cdots & \gamma_{1 p} J_{1 p} \tag{2}\\
\gamma_{12} J_{12}^{T} & r_{2} I_{n_{2}} & \cdots & \gamma_{2 p} J_{2 p} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\gamma_{1 p} J_{1 p}^{T} & \gamma_{2 p} J_{2 p}^{T} & \cdots & r_{p} I_{n_{p}}
\end{array}\right]
$$

Spline estimator of multi-response nonparametric model

The nonparametric functions f_{k} are estimated by carrying out the following penalized weighted least-squares :

$$
\begin{align*}
& \operatorname{fin}_{1}, f_{2}, \ldots f_{p} \in W_{2} \\
& \operatorname{Min}_{1}\{\underline{y})^{T} W(\underline{y}-\underline{f})+ \\
& \lambda_{1} \int_{0}^{1}\left(f_{1}^{\prime \prime}(t)\right)^{2} d t+\lambda_{2} \int_{0}^{1}\left(f_{2}^{\prime \prime}(t)\right)^{2} d t+\ldots+ \tag{3}\\
& \left.\quad \lambda_{p} \int_{0}^{1}\left(f_{p}^{\prime \prime}(t)\right)^{2} d t\right\}
\end{align*}
$$

The parameters $\lambda_{k}(k=1,2, \ldots, p)$ control the trade-off between goodness-of-fit and the smoothness of the estimates and are referred to as smoothing parameters.

We extend method as in Wang (1998) (i.e., in case of single-response nonparametric regression model) to multi-response nonparametric regression model. Let $\phi_{v}(t)=t^{v-1} /(v-1)!, \quad v=1,2, \ldots, p$; $R^{1}(s, t)=k_{2}(s) k_{2}(t)-k_{4}(s-t), \quad$ where $k_{v}()=.B_{v}() /$.$v ! and B_{v}($.$) is the v^{\text {th }}$ Bernoulli polynomial. Let $T_{k}=\left\{\phi_{v}\left(t_{k i}\right)\right\}_{i=1, v=1}^{n_{k}}$; $T=\operatorname{diag}\left(T_{1}, \ldots, T_{p}\right) ; \quad \Sigma_{k}=\left\{R^{1}\left(t_{k i}, t_{k j}\right)\right\}_{i=1, j=1}^{n_{k}, n_{k}}$ and $\quad \Sigma=\operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{p}\right)$. By extending method as in both Wang (1998) and Wahba (1990) to multi-response case, we can show that for fixed $\lambda_{k}, \quad \gamma_{k}$ for $k=1,2, \ldots, p$; and ρ, the solution to (3) is

$$
\begin{equation*}
\hat{f}_{k}(t)=\sum_{v=1}^{p} d_{k v} \phi_{v}(t)+\sum_{i=1}^{n_{k}} c_{k i} R^{1}\left(t, t_{k i}\right) \tag{4}
\end{equation*}
$$

where $k=1,2, \ldots, p$; and
$\underline{c}=\left(c_{11}, \ldots, c_{1 n_{1}}, c_{21}, \ldots, c_{2 n_{2}}, \ldots, c_{p 1}, \ldots, c_{p n_{\rho}}\right)^{T} ;$
$\underline{d}=\left(d_{11}, \ldots, d_{1 p}, d_{21}, \ldots, d_{2 p}, \ldots, d_{p 1}, \ldots, d_{p p}\right)^{T} \quad$ are
solutions to

$$
\begin{align*}
& \left(\begin{array}{cc}
T^{T} W T & T^{T} W \Sigma \\
\Sigma W T & \Sigma W \Sigma+\operatorname{diag}\left(\lambda_{1} \Sigma_{1}, \ldots, \lambda_{p} \Sigma_{p}\right)
\end{array}\right)\binom{\underline{d}}{\underline{c}} \\
& \quad=\binom{T^{T} W \underline{y}}{\Sigma W \underline{y}} \tag{5}
\end{align*}
$$

Note that $\quad \hat{f}=\left(\hat{f}_{1}\left(t_{11}\right), \ldots, \hat{f}_{1}\left(t_{1 n_{1}}\right) \hat{f}_{2}\left(t_{21}\right), \ldots\right.$, $\left.\hat{f}_{2}\left(t_{2 n_{2}}\right), \ldots, \hat{f}_{p}\left(t_{p 1}\right), \ldots, \hat{f}_{p}\left(t_{p n_{p}}\right)\right)^{T} \quad$ is always unique when T is of full column rank, which
are assumed to be true in this paper. It can be verified that a solution to

$$
\left.\begin{array}{c}
\left(\Sigma+W^{-1} \operatorname{diag}\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{p} I_{n_{p}}\right)\right) \underline{c}+T \underline{d}=\underline{y} \tag{6}\\
T^{T} \underline{c}=0
\end{array}\right\}
$$

is also a solution to (5). Thus we need to solve simultaneous equation (6) for \underline{c} and \underline{d}. In fact, $W^{-1} \operatorname{diag}\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{p} I_{n_{p}}\right)$ is asymmetric if $\lambda_{1} \neq \lambda_{2} \neq \ldots \neq \lambda_{p}$ and $\rho \neq 0$. To calculate the coefficients \underline{c} and \underline{d}, we use the following transformations:
$\tilde{\Sigma}=\Sigma \operatorname{diag}\left(I_{n_{1}} / \lambda_{1}, I_{n_{2}} / \lambda_{2}, \ldots, I_{n_{p}} / \lambda_{p}\right) \quad$ and
$\tilde{c}=\operatorname{diag}\left(\lambda_{1} I_{n_{i}}, \ldots, \lambda_{p} I_{n_{p}}\right) \underline{c}$. Then (6) is equivalent to

$$
\left.\begin{array}{c}
\left(\tilde{\Sigma}+W^{-1}\right) \tilde{\tilde{c}}+T \underline{d}=\underline{y} \tag{7}\\
T^{T} \tilde{\tilde{c}}=0
\end{array}\right\}
$$

Let $\quad T_{k}=\left(\begin{array}{ll}Q_{k 1} & Q_{k 2}\end{array}\right)\binom{R_{k}}{0}, \quad k=1,2, \ldots, p \quad$ be the $Q R$ decompositions. Let
$Q_{1}=\operatorname{diag}\left(Q_{11}, Q_{21}, Q_{31}, \ldots, Q_{p 1}\right)$;
$Q_{2}=\operatorname{diag}\left(Q_{12}, Q_{22}, Q_{32}, \ldots, Q_{p 2}\right)$;
$R=\operatorname{diag}\left(R_{1}, R_{2}, \ldots, R_{p}\right)$; and $B=\tilde{\Sigma}+W^{-1}$. It can be shown that the solutions to (7) are
$\underline{\tilde{c}}=Q_{2}\left(Q_{2}^{T} B Q_{2}\right)^{-1} Q_{2}^{T} \underline{y}$,
$R \underline{d}=Q_{1}^{T}(\underline{y}-B \underline{\tilde{c}})$
Note that $\underline{f}=A \underline{y}$ where
$A=I-W^{-1} Q_{2}\left(Q_{2}^{T} B Q_{2}\right)^{-1} Q_{2}^{T}$
is the "hat matrix". Here, A is not symmetric, which is different from the usual independent case.

Estimations of parameters

We have assumed that the parameters $\lambda_{k}, \gamma_{i j}$ (for $i, j, k=1,2, \ldots, p ; k \neq i \neq j$) and ρ are fixed. In practice it is very important to estimate these parameters from the data. Since observations are correlated, popular methods such as the usual generalized maximum likelihood (GML) method and the generalized cross validation (GCV) method may underestimate the smoothing parameters
(Wang 1998). In this section we propose the following three methods to estimate the smoothing parameters λ_{k}, the weighting parameters r_{k}, and $\gamma_{i j}$; and the correlation parameter ρ simultaneously, i.e. an extension of the GML method based on a Bayesian model; an extension of the GCV method; and leaving-out-one-pair cross validation.

Wang (1998) proposed the GML and GCV methods for correlated observations with one smoothing parameter. Wang et al. (2000) proposed the GML and GCV methods for correlated observations with two smoothing parameters. In multi-response (with p responses) nonparametric regression model, there are p smoothing parameters which need to be estimated simultaneously together with the covariance parameters. Following an extension of derivation, we extend the GML and GCV in both Wang (1998) and Wang et al. (2000) as follows.

The GML estimates of $\lambda_{k}, \gamma_{i j}, r_{k}$ and ρ are minimizers of the following GML function:

$$
\begin{align*}
& M\left(\lambda_{k}, \gamma_{i j}, r_{k}, \rho\right)=\frac{\underline{y}^{T} W(I-A) \underline{y}}{\left[\operatorname{det}^{+}(W(I-A))\right]^{\frac{1}{n-4}}} \\
&=\frac{\underline{z}^{T}\left(Q_{2}^{T} B Q_{2}\right)^{-1} \underline{z}}{\left[\operatorname{det}\left(Q_{2}^{T} B Q_{2}\right)^{-1}\right]^{\frac{1}{n-4}}} \tag{10}
\end{align*}
$$

where $n=n_{1}+n_{2}+\ldots+n_{p}$; det^{+}is the product of the nonzero eigen values and $\underline{z}=Q_{2}^{T} \underline{y}$. The minimizers of $M\left(\lambda_{k}, \gamma_{i j}, r_{k}, \rho\right)$ are called GML estimates.

The GCV estimates of $\lambda_{k}, \gamma_{i j}, r_{k}$ and ρ are minimizers of the following GCV function :

$$
\begin{align*}
V\left(\lambda_{k}, \gamma_{i j}, r_{k}, \rho\right) & =\frac{\|W(I-A) \underline{y}\|^{2}}{[\operatorname{Tr}(W(I-A))]^{2}} \\
& =\frac{\underline{z}^{T}\left(Q_{2}^{T} B Q_{2}\right)^{-2} \underline{z}}{\left[\operatorname{Tr}\left(Q_{2}^{T} B Q_{2}\right)^{-1}\right]^{2}} \tag{11}
\end{align*}
$$

In the following we propose a cross validation method based on leaving-out-onepair procedure. Suppose there are a total of N ($N \geq \max \left\{n_{1}, n_{2}, \ldots, n_{p}\right\}$) distinct time points and thus N pairs of observations. Any one observation in a pair may be missing. These
pairs are numbered from 1 to N. We use the following notation: superscripts (i) to denote the collection of elements corresponding to the $i^{\text {th }}$ pair; superscripts [i] to denote the collection of elements after deleting the $i^{\text {th }}$ pair; superscripts $\{i\}$ to denote solution of f_{k}
without the $i^{\text {th }}$ pair. When one observation in a pair is missing, superscripts indicate a single observation instead of a pair. The solutions to :

$$
\begin{align*}
& \operatorname{Min}_{f_{1}, \ldots, f_{p} \in W_{2}}\left\{\left(\underline{y}^{[i]}-\underline{f}^{[i]}\right)^{T} W^{[i]}\left(\underline{y}^{[i]}-\underline{f}^{[i]}\right)+\right. \\
& \quad \lambda_{1} \int_{0}^{1}\left(f_{1}^{\prime \prime}(t)\right)^{2} d t+\lambda_{2} \int_{0}^{1}\left(f_{2}^{\prime \prime}(t)\right)^{2} d t+\ldots+ \\
& \left.\quad \lambda_{p} \int_{0}^{1}\left(f_{p}^{\prime \prime}(t)\right)^{2} d t\right\} \tag{12}
\end{align*}
$$

are $\hat{f}_{1}^{(i)}, \hat{f}_{2}^{(i)}, \ldots, \hat{f}_{p}^{(i)}$. Assume that there are p elements in the $i^{\text {th }}$ pair (it is simple if there is only one). Denote $i_{1}, i_{2}, \ldots, i_{p}$ as the row numbers of this pair in $\underline{y}_{1}, \underline{y}_{2}, \ldots, \underline{y}_{p}$, respectively. Define:
$y_{k j}^{*}=\left\{\begin{array}{c}y_{k j}, j \neq i_{k} \\ \hat{f}_{k}^{(i)}\left(t_{k_{k}}\right), j=i_{k}, k=1,2, \ldots, p\end{array}\right.$
Suppose that we denote $\underline{y}_{k}^{*}=\left(y_{k 1}^{*}, \ldots, y_{k n_{k}}^{*}\right)^{T}, \quad \underline{y}^{*}=\left(\underline{y}_{1}^{* T}, \ldots, \underline{y}_{p}^{* T}\right)^{T}, \quad$ and $\hat{f}^{\{i\}}(\underline{t})=\left(\hat{f}_{1}^{\{i\}}\left(t_{11}\right), \ldots, \hat{f}_{1}^{\{i\}}\left(t_{1 n_{1}}\right), \hat{f}_{2}^{\{i\}}\left(t_{21}\right), \ldots\right.$,
$\left.\hat{f}_{2}^{(i)}\left(t_{2 n_{2}}\right), \ldots, \hat{f}_{p}^{\text {i\} }}\left(t_{p 1}\right), \ldots, \hat{f}_{p}^{(i)}\left(t_{p n_{p}}\right)\right)$. Then we have the following leaving-out-one-pair lemma.

Lemma. For fixed $\lambda_{k}, \gamma_{i j}, r_{k}, \rho$, and i, we have $\hat{f}^{\{i\}}(\underline{t})=A \underline{y}^{*}$
Proof :
Let $f(\underline{t})=\left\{f_{1}\left(t_{11}\right), \ldots, f_{1}\left(t_{1 n_{1}}\right), f_{2}\left(t_{21}\right), \ldots\right.$,
$\left.f_{2}\left(t_{2 n_{2}}\right), \ldots, f_{p}\left(t_{p 1}\right), \ldots, f_{p}\left(t_{p n_{p}}\right)\right\}$ and
$\hat{f}^{(i)}(\underline{t})=\left(\hat{f}_{1}^{(i)}\left(t_{11}\right), \ldots, \hat{f}_{1}^{(i)}\left(t_{1 n_{1}}\right), \hat{f}_{2}^{(i)}\left(t_{21}\right), \ldots\right.$,
$\left.\hat{f}_{2}^{(i)}\left(t_{2 n_{2}}\right), \ldots, \hat{f}_{p}^{(i)}\left(t_{p 1}\right), \ldots, \hat{f}_{p}^{(i)}\left(t_{p n_{p}}\right)\right)$. Similarly define $f\left(\underline{t}^{[i]}\right)$ and $\hat{f}^{\{i\}}\left(\underline{t}^{[i]}\right)$ as $f(\underline{t})$ and $\hat{f}^{i\}}(\underline{t})$ respectively without the elements corresponding to the $i^{t h}$ pair. For any function $f_{1}, f_{2}, \ldots, f_{p}$ in W_{2}, we have :

$$
\begin{align*}
& \left(\underline{y}^{*}-f(\underline{t})\right)^{T} W\left(\underline{y}^{*}-f(\underline{t})\right)+\lambda_{1} \int_{0}^{1}\left(f_{1}^{\prime \prime}(t)\right)^{2} d t+ \\
& \lambda_{2} \int_{0}^{1}\left(f_{2}^{\prime \prime}(t)\right)^{2} d t+\ldots+\lambda_{p} \int_{0}^{1}\left(f_{p}^{\prime \prime}(t)\right)^{2} d t \\
& \geq\left(\underline{y}^{[i]}-f\left(\underline{t}^{[i]}\right)\right)^{T} W^{[i]}\left(\underline{y}^{[i]}-f\left(\underline{t}^{[i]}\right)\right)+ \\
& \lambda_{1} \int_{0}^{1}\left(f_{1}^{\prime \prime}(t)\right)^{2} d t+\ldots+\lambda_{p} \int_{0}^{1}\left(f_{p}^{\prime \prime}(t)\right)^{2} d t \\
& \geq\left(\underline{y}^{[i]}-\hat{f}^{\{i\}}\left(\underline{t}^{[i]}\right)\right)^{T} W^{[i]}\left(\underline{y}^{[i]}-\hat{f}^{\{i\}}\left(\underline{t}^{[i]}\right)\right)+ \\
& \lambda_{1} \int_{0}^{1}\left(\left(\hat{f}_{1}^{\{i\}}(t)\right)^{\prime \prime}\right)^{2} d t+\ldots+\lambda_{p} \int_{0}^{1}\left(\left(\hat{f}_{p}^{\{i\}}(t)\right)^{\prime \prime}\right)^{2} d t \\
& =\left(\underline{y}^{*}-\hat{f}^{\{i\}}\left(\underline{t}^{[i]}\right)\right)^{T} W^{[i]}\left(\underline{y}^{*}-\hat{f}^{\{i\}}\left(\underline{t}^{[i]}\right)\right)+ \\
& \lambda_{1} \int_{0}^{1}\left(\left(\hat{f}_{1}^{\{i\}}(t)\right)^{\prime \prime}\right)^{2} d t+\ldots+\lambda_{p} \int_{0}^{1}\left(\left(\hat{f}_{p}^{\{i\}}(t)\right)^{\prime \prime}\right)^{2} d t \tag{13}
\end{align*}
$$

where the first inequality holds because after switching rows and columns, we have

$$
\begin{aligned}
& \left(\underline{y}^{*}-f(\underline{t})\right)^{T} W\left(\underline{y}^{*}-f(\underline{t})\right)= \\
& \binom{\underline{y}^{*^{[i]}}-f\left(\underline{t}^{[i]}\right)}{\underline{y}^{*^{(i)}}-f\left(\underline{t}^{(i)}\right)}^{T}\left(\begin{array}{cc}
W^{[i]} & 0 \\
0 & W^{(i)}
\end{array}\right)\binom{\underline{y}^{*^{[i]}}-f\left(\underline{t}^{[i]}\right)}{\underline{y}^{*^{(i)}}-f\left(\underline{t}^{(i)}\right)}
\end{aligned}
$$

$$
\geq\left(\underline{y}^{[i]}-f\left(\underline{t}^{[i]}\right)\right)^{T} W^{[i]}\left(\underline{y}^{[i]}-f\left(\underline{t}^{[i]}\right)\right)
$$

The second inequality holds because $\hat{f}_{1}^{\{i\}}, \ldots, \hat{f}_{p}^{\{i\}}$ are solutions to (12). The last equality holds because of the definition of \underline{y}^{*}. The inequality at (13) indicates that $\hat{f}_{1}^{\{i\}}, \ldots, \hat{f}_{p}^{\{i\}}$ are solutions to (3) with \underline{y} replaced by \underline{y}^{*}. Therefore $\hat{f}^{\{i\}}(\underline{t})=A \underline{y}^{*}$.

As a consequence of this lemma, we do not need to solve separate minimization problems (12) for each deleting-one-pair set. All we need to do is to solve the following equations
$\left[\begin{array}{cccc}m_{11} & m_{12} & \ldots & m_{1 p} \\ m_{21} & m_{22} & \ldots & m_{2 p} \\ \cdot & \cdot & \ldots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ m_{p 1} & m_{p 2} & \cdots & m_{p p}\end{array}\right]\left[\begin{array}{c}s_{1} \\ s_{2} \\ \cdot \\ \cdot \\ s_{p}\end{array}\right]=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \cdot \\ \cdot \\ u_{p}\end{array}\right]$
(14)
for $\hat{f}_{k}^{\{i\}}\left(t_{k_{k}}\right)-y_{k_{k}}$, where $m_{11}=1-a\left(i_{1}, i_{1}\right)$;
$m_{12}=-a\left(i_{1}, n_{1}+i_{2}\right) ; \ldots ; m_{1 p}=-a\left(i_{1}, n_{1}+i_{p}\right) ;$
$m_{21}=-a\left(n_{1}+i_{2}, i_{1}\right)$;
$m_{22}=1-a\left(n_{1}+i_{2}, n_{1}+i_{2}\right) ; \ldots ;$
$m_{2 p}=-a\left(i_{2}, n_{2}+i_{p}\right) ; \ldots ; m_{p 1}=-a\left(n_{1}+i_{p}, i_{1}\right)$
$m_{p 2}=-a\left(n_{2}+i_{p}, i_{2}\right) ; \ldots ;$
$m_{p p}=1-a\left(n_{p-1}+i_{p}, n_{p-1}+i_{p}\right)$
$s_{1}=\hat{f}_{1}^{\{i\}}\left(t_{1 i_{1}}\right)-y_{1 i_{1}} ; \quad s_{2}=\hat{f}_{2}^{\{i\}}\left(t_{2 i_{2}}\right)-y_{1 i_{2}} ; \ldots ;$
$s_{p}=\hat{f}_{p}^{\{i\}}\left(t_{p i_{\rho}}\right)-y_{p i_{\rho}} ; \quad u_{1}=f_{1}^{\{i\}}\left(t_{1 i_{1}}\right)-y_{1 i_{1}} ;$
$u_{2}=f_{2}^{\{i\}}\left(t_{2 i_{2}}\right)-y_{1 i_{2}} ; \quad$;
$u_{p}=f_{p}^{\{i\}}\left(t_{p i_{\rho}}\right)-y_{p i_{\rho}} ;$ and $a(i, j)$ are
elements of the matrix A. If there is only one observation in the $i^{\text {th }}$ pair, for example $y_{1 i_{i}}$, we then have the following equation
$\left(1-a\left(i_{1}, i_{1}\right)\right)\left(\hat{f}_{1}^{i i_{i}}\left(t_{1 i_{i}}\right)-y_{1 i_{i}}\right)=\hat{f}_{1}\left(t_{1 i_{i}}\right)-y_{1 i_{1}}$
Note that (15) is exactly the same as the
"leaving-out-one" lemma in the independent case.
 $\underline{\hat{f}}^{\{-\}}=\left(\left(\hat{f}_{1}^{\{-\}}\right)^{T}, \ldots,\left(\underline{f}_{p}^{\{-\}}\right)^{T}\right)$, where $i_{k j}$ denotes the index of the pair for observation y_{ψ}. Define the cross validation score as

$$
\begin{equation*}
C\left(\lambda_{k}, \gamma_{i j}, r_{k}, \rho\right)=\frac{1}{n}\left\|W\left(\underline{y}-\underline{f}^{\{-\}}\right)\right\|^{2} \tag{16}
\end{equation*}
$$

Here, C estimates the weighted mean-square errors (WMSE) (Wang 1998). The minimizers of $C\left(\lambda_{k}, \gamma_{i j}, r_{k}, \rho\right)$ are called cross validation estimates of the parameters.

CONCLUSION

The distribution of vector responses \underline{y} is Multivariate Normal with mean \underline{f} and variance θW^{-1}. General smoothing spline models provide flexibility for estimating nonparametric functions and are widely used in many areas. With multiple correlated responses it is better to estimate these functions jointly using the penalized weighted least-squares.

DAFTAR PUSTAKA

Aydin D. 2007. A Comparison of the Nonparametric Regression Models Using Smoothing Spline and Kernel Regression. Proceedings of World Academy of Science, Engineering and Technology. ISSN 1307-6884. Volume 26: 730734.

Budiantara IN, Subanar \& Soejoeti Z. 1997. Weighted Spline Estimator. Proc. $51^{\text {st }}$ Session of the International Statistical Institute, Istanbul : 333-334.
Cox DD 1983. Assymptotic for M-type Smoothing Spline. The Annals. of Statistics. 11: 530-551.
Cox DD \& O’Sullivan F. 1996. Penalized Likelihood Type Estimators for Generalized Nonparametric Regression. J. Mult. Anal. 56: 185-206.
Craven P \& Wahba G. 1979. Smoothing Noisy Data With Spline Function: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross Validation. Numer. Math. 31: 377-403.
Fernandez MF \& Opsomer JD. 2005. Smoothing Parameter Selection Methods for Nonparametric Regression With Spatially Correlated Errors. The Canadian Journal of Statistics. 33 (2): 279295.

Flessler JA. 1991. Nonparametric Fixed-Interval Smoothing With Vector Splines. IEEE Trans. Signal Processing. 39:852-859.
Gallant AR. 1975. Seemingly Unrelated Nonlinear Regression, J. Econometrics. 3: 35-50.
Gooijer JGD, Gannoun A \& Larramendy I. 1991. Nonparametric Regression With Serially Correlated Errors. http://www.tinbergen.nl/discussionpapers/99063 .pdf [12 January 2009].

Kimeldorf G \& Wahba G. 1971. Some Result on Tchebycheffian Spline Functions. J. of Math. Anal. And Applications. 33: 82-95.
Koenker RNgP \& Portnoy S. 1994. Quantile Smoothing Splines. Biometrics. 81: 673-680.
Lestari B. 2007. Estimation of Three Responses Nonparametric Regression Models. Paper for $8^{\text {th }}$ National Seminar in Statistics (SNS VIII), November $3^{\text {rd }}$, 2007, Department of Statistics, Sepuluh Nopember Institute of Technology, Surabaya.
Lestari B. 2008a. Spline Estimator of Biresponse Nonparametric Regression Model with Unequal Variances of Errors. Jurnal Penelitian Matematika dan Sains, FMIPA Universitas Negeri Surabaya. 15 (2): 85-93.
Lestari B. 2008b. Penalized Weighted Least-squares Estimator for Bivariate Nonparametric Regression Model with Correlated Errors. Prosiding Seminar Nasional Matematika dan Statistika 2008, Fak-SainsTeks UNAIR, ISBN : 978-979-19096-0-0: 83-95.
Miller JJ \& Wegman EJ. 1987. Vector Function Estimation Using Splines. Journal of the Royal Statistical Society, Series B. 17: 173-180.
Oehlert GW. 1992. Relaxed Boundary Smoothing Spline. The Annals. of Statistics. 20: 146-160.
Wegman EJ. 1981. Vector Spline and Estimation of filter Function. Technometrics. 23: 83-89.
Wahba G. 1983. Bayesian "Confidence Intervals" for the Cross-Validated Smoothing Spline, Journal of the Royal Statistical Society, Series B. 45: 133-150.

Wahba G. 1990. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics. Volume 59, SIAM, Philadelphia.

