In silico Test Proteolytic Potential of Papain and Zingibain Enzymes Against Protein Forming Congenital and Senilis Cataracts

  • Gangsar Lintas Damai Faculty of Medicine, University of Jember, Indonesia
  • Nugraha Wahyu Cahyana Ophthalmology Department, Faculty of Medicine, University of Jember, Indonesia
  • Ayu Munawaroh Aziz Department of Histology, Faculty of Medicine, University of Jember, Indonesia

Abstract

Abstract


Phacoemulsification is cataract therapy’s gold standard with lowest complication rate and best visual outcome. However, phacoemulsification is expensive and difficult to use widely. Pathogenesis of cataract related to Crystalline P23T γD protein in congenital cataracts and β-amyloid protein in senile cataract. Papain enzymes and zingibain enzymes are cataract’s alternatives therapy with proteolytic effects that potentially lyse these proteins. Proteolytic injection with 30-gauge needle results in small, safe incision. Papain enzyme from Carica Papaya plant and zingibain enzyme from Zingiber Officinale plant which grows plentifully in Indonesia that becomes cheap source of proteolytic. This study’s purpose is to compare probability of binding energy based on Binding Interaction Model (BIM) between papain and zingibain enzymes against Crystalline P23T γD protein and β-amyloid protein with molecular docking. This research uses  https://cluspro.bu.edu./login.php. BIM with lowest binding energy has most stable bond. Docking results show interaction probability between papain enzyme and Crystalline P23T γD protein has lowest binding energy of -730.4 kJ/mol at BIM 1. Probability of interaction between papain enzyme and β-amyloid protein has lowest binding energy of -697.2 kJ/mol at BIM 1. Probability of interaction between the enzyme zingibain and the crystalline P23T protein γD has lowest binding energy of  -890.5 kJ/mol at BIM 2. Probability of interaction between the enzyme zingibain and the β-amyloid protein has lowest binding energy of  -873.5 kJ/mol at BIM 0. It was concluded that the zingibain enzyme has the most stable probability of forming a stable bond to Crystalline P23T γD protein and β-amyloid protein.


Keyword:In silico, papain, zingibain, cataract

References

Aidin, A., Sahiri, N., & Madauna, I. (2016). PENGARUH JENIS RIMPANG DAN KOMPOSISI MEDIA TANAM TERHADAP PERTUMBUHAN BIBIT JAHE MERAH (Zingiber officinale Rosc.) The Effect of Rhizome Types and The Composition of Planting Media on The Growth of Red Ginger (Zingiber Officinale Rosc.). 4(4), 394–402.

Alperstein, A. M., Ostrander, J. S., Zhang, T. O., & Zanni, M. T. (2019). Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6602–6607. https://doi.org/10.1073/PNAS.1821534116

Anggraini, D. (2020). Efektifitas Krim Papain Kasar Getah Buah Pepaya (Carica Papaya.L) yang Diolah Dengan Metode Freeze Drying Terhadap Penyembuhan Penebalan Kulit (Callus). Pharmauho: Jurnal Farmasi, Sains, dan Kesehatan, 6(1), 1. https://doi.org/10.33772/PHARMAUHO.V6I1.10407

Boatz, J. C., Whitley, M. J., Li, M., Gronenborn, A. M., & Van Der Wel, P. C. A. (2017). Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH. Nature Communications 2017 8:1, 8(1), 1–10. https://doi.org/10.1038/ncomms15137

Filho, R. S., Moreto, R., Nakaghi, R. O., Haddad, W., Coelho, R. P., & Messias, A. (2020). Costs and outcomes of phacoemulsification for cataracts performed by residents. Arquivos brasileiros de oftalmologia, 83(3), 209–214. https://doi.org/10.5935/0004-2749.20200059

Fukumoto, H., Rosene, D. L., Moss, M. B., Raju, S., Hyman, B. T., & Irizarry, M. C. (2004). Beta-secretase activity increases with aging in human, monkey, and mouse brain. The American journal of pathology, 164(2), 719–725. https://doi.org/10.1016/S0002-9440(10)63159-8

Gagaoua, M., Dib, A. L., Lakhdara, N., Lamri, M., Botineştean, C., & Lorenzo, J. M. (2021). Artificial meat tenderization using plant cysteine proteases. Current Opinion in Food Science, 38, 177–188. https://doi.org/10.1016/J.COFS.2020.12.002
Haripriya, A., Sonawane, H., & Thulasiraj, R. D. (2017). Changing techniques in cataract surgery: how have patients benefited? Community Eye Health, 30(100), 80. Diambil dari /pmc/articles/PMC5820631/

Jin, C., Chen, X., Law, A., Kang, Y., Wang, X., Xu, W., & Yao, K. (2017). Different‐sized incisions for phacoemulsification in age‐related cataract. The Cochrane Database of Systematic Reviews, 2017(9). https://doi.org/10.1002/14651858.CD010510.PUB2
Kim, S., & Kim, J. T. (2021). The simply modified intrascleral fixation using round flange (SMURF) technique for intrascleral intraocular lens fixation. Scientific Reports, 11(1), 3904. https://doi.org/10.1038/S41598-021-81924-Y

Laily, A. N., & Khoiri, A. N. (2016). IDENTIFIKASI SENYAWA ANTIDIABETES SECARA in Silico PADA Carica pubescens Lenne & K. Koch. El-Hayah : Jurnal Biologi, 5(4), 135–142. https://doi.org/10.18860/ELHA.V5I4.3469

Moore, A. T. (2004). Understanding the molecular genetics of congenital cataract may have wider implications for age related cataract. British Journal of Ophthalmology, 88(1), 2–3. https://doi.org/10.1136/BJO.88.1.2

Morellon-Sterling, R., El-Siar, H., Tavano, O. L., Berenguer-Murcia, Á., & Fernández-Lafuente, R. (2020). Ficin: A protease extract with relevance in biotechnology and biocatalysis. International journal of biological macromolecules, 162, 394–404. https://doi.org/10.1016/J.IJBIOMAC.2020.06.144

Naqvi, A. A. T., Mohammad, T., Hasan, G. M., & Hassan, M. I. (2018). Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships. Current topics in medicinal chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157

Nizami, A. A., & Gulani, A. C. (2021). Cataract. StatPearls. Diambil dari https://www.ncbi.nlm.nih.gov/books/NBK539699/

Pairul, P. P. B., Susianti, & Nasution, S. H. (2017). Jahe ( Zingiber Officinale ) Sebagai Anti Ulserogenik. Medula, 7(5), 42–46.

Pande, A., Annunziata, O., Asherie, N., Ogun, O., Benedek, G. B., & Pande, J. (2005). Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Biochemistry, 44(7), 2491–2500. https://doi.org/10.1021/BI0479611

Rathnavelu, V., Alitheen, N. B., Sohila, S., Kanagesan, S., & Ramesh, R. (2016). Potential role of bromelain in clinical and therapeutic applications. Biomedical Reports, 5(3), 283. https://doi.org/10.3892/BR.2016.720

Rawlings, N. D., O’Brien, E., & Barrett, A. J. (2002). MEROPS: the protease database. Nucleic acids research, 30(1), 343–346. https://doi.org/10.1093/NAR/30.1.343

Saâd, B. (2016). Why Is The Nuclear Binding Energy Negative? Aston’s whole number rule, mass-defect and binding energy. Journal of Multidisciplinary Engineering Science and Technology, 3(6), 2458–9403. Diambil dari www.jmest.org

Sen, S., Patil, M., Saxena, R., Kumar, A., Amar, S., Das, D., … Saini, P. (2019). Perceived difficulties and complications in learners of phacoemulsification: A principal component analysis model. Indian journal of ophthalmology, 67(2), 213–216. https://doi.org/10.4103/IJO.IJO_1133_18

Sengupta, S., Venkatesh, R., Krishnamurthy, P., Nath, M., Mashruwala, A., Ramulu, P. Y., … Lee, P. (2016). Intraocular Pressure Reduction after Phacoemulsification versus Manual Small-Incision Cataract Surgery: A Randomized Controlled Trial. Ophthalmology, 123(8), 1695–1703. https://doi.org/10.1016/J.OPHTHA.2016.04.014

Shouket, H. A., Ameen, I., Tursunov, O., Kholikova, K., Pirimov, O., Kurbonov, N., … Mukimov, B. (2020). Study on industrial applications of papain: A succinct review. IOP Conference Series: Earth and Environmental Science, 614(1), 012171. https://doi.org/10.1088/1755-1315/614/1/012171

Takeuchi, M., Shieh, P. C., & Horng, C. T. (2020). Treatment of Symptomatic Vitreous Opacities with Pharmacologic Vitreolysis Using a Mixure of Bromelain, Papain and Ficin Supplement. Applied Sciences 2020, Vol. 10, Page 5901, 10(17), 5901. https://doi.org/10.3390/APP10175901
Tapal, A., & Tiku, P. K. (2019). Nutritional and Nutraceutical Improvement by Enzymatic Modification of Food Proteins. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, 471–481. https://doi.org/10.1016/B978-0-12-813280-7.00027-X

Tătaru, C. I., Tătaru, C. P., Costache, A., Boruga, O., Zemba, M., Ciuluvică, R. C., & Sima, G. (2020). Congenital cataract – clinical and morphological aspects. Romanian Journal of Morphology and Embryology, 61(1), 105. https://doi.org/10.47162/RJME.61.1.11

Yunta, M. (2016). Docking and Ligand Binding Affinity: Uses and Pitfalls. American Journal of Modeling and Optimization, 4, 74–114. https://doi.org/10.12691/AJMO-4-3-2

Zhang, B. W., Li, X., Sun, W. L., Xing, Y., Xiu, Z. L., Zhuang, C. L., & Dong, Y. S. (2017). Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. Journal of agricultural and food chemistry, 65(38), 8319–8330. https://doi.org/10.1021/ACS.JAFC.7B02531
Published
2022-02-28
How to Cite
DAMAI, Gangsar Lintas; CAHYANA, Nugraha Wahyu; AZIZ, Ayu Munawaroh. In silico Test Proteolytic Potential of Papain and Zingibain Enzymes Against Protein Forming Congenital and Senilis Cataracts. Journal of Agromedicine and Medical Sciences, [S.l.], v. 8, n. 1, p. 39-45, feb. 2022. ISSN 2714-5654. Available at: <https://jurnal.unej.ac.id/index.php/JAMS/article/view/23324>. Date accessed: 25 jan. 2025. doi: https://doi.org/10.19184/ams.v8i1.23324.
Section
Original Research Articles