Flood Vulnerability Mapping Using Geographic Information System (GIS) in Gajah Wong Sub Watershed, Yogyakarta County Province
Abstract
Gajah Wong Sub Watersheds frequently hit by floods which are potentially damaging. Therefore, a study on a flood vulnerability of the area is deemed necessary. This study aims to map floods vulnerability, to know the level and its spread in Gajah Wong Sub Watershed of Yogyakarta County Province by using Geographic Information System (GIS). The methods implemented in this study was weighting and scoring analysis and overlay of parameter attributes data of flood vulnerability framer, consisting of land use, slope of mountain, rainfall, soil type, geology, height of location and river buffer. Each parameter of flood vulnerability framer is classified based on the magnitude of effect towards flood vulnerability. The results of this study indicate that there were three levels of flood vulnerability in Gajah Wong Sub Watershed, i.e. low flood vulnerability of 338.34 Ha (6.86%), medium flood vulnerability level of 4,595.62 Ha (93.13%) and high flood vulnerability level of 0.76 Ha (0.02%). Low flood vulnerability level is ditributed randomly to all areas of Gajah Wong Sub Watershed cover of Ngaglik Sub-district, Depok Sub-district, small part of Pleret Sub-district and was predominantly in Banguntapan Sub-district, an area with rainfall. Medium flood vulnerability areas dominated Gajah Wong Watershed. Meanwhile, high flood vulnerability level occupied small portion of the area and spread in the southern part of Pleret Sub-district which was taken as the area of River Buffer analysis.
Keywords: GIS; Gajah Wong; Sub Watershed; Yogyakarta.
Copyright (c) 2020 Geosfera Indonesia Journal and Department of Geography Education, University of Jember
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
References
Ardiansyah, (2018) “Analisis Kerentanan dan Bahaya Banjir Sub Daerah Aliran Sungai Gajah Wong di Daerah Istimewa Yogyakarta dengan Sistem Informasi Geografis (SIG),” Universitas Negeri Yogyakarta, Thesis. Published
Ariyora, Y., Budisusanto, Y. and Prasasti. I. (2015). Pemanfaatan Data Penginderaan Jauh dan SIG untuk Analisa Banjir (Studi Kasus: Banjir Provinsi DKI Jakarta). Geoid, 10, 137–146.
Beevers, L., Walker, G., and Strathie A. (2016). A-systems approach to flood vulnerability. Civil Engineering and Environmental Systems, 33, 1-15.
BNPB. (2012). “Regulation of the Head of National Disaster Management Agency of the Republic of Indonesia Number 2 Year 2012 on General Guidance on Study of Disaster Risk.” BNPB, Jakarta, p. 62.
Christiawan, P.I., and Wesnawa. I.G.A. (2014). Geografi Bencana. Yogyakarta: Graha Ilmu.
Darabi, H., Choubin, B., Rahmati, O., Torabi Haghighi, A., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142-154.
Hartono, M.B. (2014). “Peran Masyarakat dan Pemerintah dalam Pengelolaan Air Limbah Domestik di Sub DAS Gajahwong,” Universitas Gadjah Mada, Thesis, unpublished.
Hermon. D. (2012). Geografi Bencana Alam. Jakarta: Raja Grafindo Persada, 272.
Heryanti, D.N., and Kingma, N.C. (2012). “Community Based Approach To Assess Flood Risk Perception Along Code River,” Indones. J. Geogr., vol. 44, no. 2, pp. 134–149.
igović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water (Switzerland), 9(6) doi:10.3390/w9060360
Jia, B., Simonovic, S.P., Zhong, P., and Yu Z. (2016). A- Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System. Water Resources Management, 30, 3363–3387.
Kourgialas, N.N., and Karatzas, G.P. (2016). A flood risk decision making approach for Mediterranean tree crops using GIS; climate change effects and flood-tolerant species. Environmental Science and Policy, 63, 132–142.
Lee, S., Kim, J. -., Jung, H. -., Lee, M. J., & Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in seoul metropolitan city, korea. Geomatics, Natural Hazards and Risk, 8(2), 1185-1203. doi:10.1080/19475705.2017.1308971
Lyu, H. -., Sun, W. -., Shen, S. -., & Arulrajah, A. (2018). Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of the Total Environment, 626, 1012-1025. doi:10.1016/j.scitotenv.2018.01.138
Manfré, L.A. (2012) An Analysis of Geospatial Technologies for Risk and Natural Disaster Management. ISPRS International Journal of Geo-Information 1, 166–185.
National Standardization Agency. (2010). Klasifikasi Penutup Lahan, Number. 7645:2010. Jakarta: BSN, 28.
Paimin, P., Sukresno, S., and Purwanto, P. (2010). Sidik Cepat Degradasi Sub DAS. Bogor: Research and Development Center for Conservation and Rehabilitation, Bogor Forestry Research and Development Agency.
Pettorelli, N., Laurance, W. F., O'Brien, T. G., Wegmann, M., Nagendra, H., & Turner, W. (2014). Satellite remote sensing for applied ecologists: Opportunities and challenges. Journal of Applied Ecology, 51(4), 839-848. doi:10.1111/1365-2664.12261
Rachmawati R., and Budiarti C.V. (2017). “Use of Space and the Need for Planning in the Disaster-Prone Area of Code River, Yogyakarta, Indonesia,” Indones. J. Geogr., vol. 48, no. 2, p. 178.
Ramdhan, S., Arifin, H.S., Suharnoto, Y. (2018).“Towards Water Sensitive City: Lesson Learned From Bogor Flood Hazard in 2017,” International Conference On Energy, Environment And Information System, Semarang, Indonesia, vol. 31, pp. 1–5, February [E3S Web Conf. Indonesia, p. 05, 2017]
Robert J. K. (2014). Rekayasa Dan Manajemen Banjir Kota. Yogyakarta: Andi Offset.
Ropingi, R. (2004). “Perilaku Sosial Masyarakat Lembah Sungai Gajah Wong Yogyakarta,” J. Penelit. dan Eval. Pendidik., vol. 6, no. 1, pp. 57–71.
Santillan, J.R., Marqueso, J.T., Makinano-Santillan, M. and Serviano, J.L. (2016). “Beyond flood hazard maps: Detailed flood characterization with remote sensing, gis and 2D modelling,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2016, vol. 42, no. 4W1, pp. 315–323.
Sein, K.K., and Myint, T. (2016). Flood hazard mapping using hydraulic model and GIS : a case study in Mandalay city, Myanmar. Suan Sunandha Science and Technology Journal, 5, 15-20.
Sigit, A. (2016). “Analisis Spasial Kemampuan Infiltrasi Sebagai Bagian Dari Indikasi Bencana Kekeringan Hidrologis di DAS Wedi, Kabupaten Klaten-Boyolali,” Proceedings of the 2016 National Geography Seminar UMS Disaster Risk Reduction Efforts Related to Climate Change, Surakarta, Indonesia, pp. 101–111.
Stoica, A. and Iancu, I. (2011). Flood vulnerability assesment based on mathematical modeling. Mathematical Modeling in Civil Engineering, 1, 265–272.
Subardja, D.S, Ritung, S., Anda M., Suryani E., and Subandiono R.E. (2014). Petunjuk Teknis Klasifikasi Tanah Nasional, 1st ed. Center for Agricultural Land Resources Research and Development Agency for Agricultural Research and Development, 45.
Suryantoro, A. (2009). Integrasi Aplikasi Sistem Informasi Geografis. Malang: Ombak, 214.
Szewrański, S., Świąder, M., Kazak, J. K., Tokarczyk-Dorociak, K., & van Hoof, J. (2018). Socio-environmental vulnerability mapping for environmental and flood resilience assessment: The case of ageing and poverty in the city of wrocław, poland. Integrated Environmental Assessment and Management, 14(5), 592-597. doi:10.1002/ieam.4077
Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332-343. doi:10.1016/j.jhydrol.2014.03.008
Tehrany, M.S, Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538-1561. doi:10.1080/19475705.2017.1362038
Thanvisitthpon, N. (2017). “Impacts of repetitive floods and satisfaction with flood relief efforts: A case study of the flood-prone districts in Thailand’s Ayutthaya province,” Clim. Risk Manag., vol. 18, pp. 15–20.
Tika, M.P. (2005). Metode Penelitian Geografi. Jakarta: Bumi Aksara, 162.
Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., . . . Duan, H. (2019). A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at shangyou, china. Remote Sensing, 11(1) doi:10.3390/rs11010062
Weng, Q. (2010). Remote Sensing and GIS Integration. New York: The McGraw-Hill Companies.
Winata, E., and Hartantyo, E. (2013). “Kualitas Air Tanah di Sepanjang Kali Wong Ditinjau dari Pola Sebaran Eschericjia Coli (Studi Kasus Kecamatan Umbulharjo),” J. Fis. Ilm., vol. XVII, no. Tabel 1, pp. 8–11.