Identification of Relict Landslide Parts Based on Morphometric Data to Determine Potential Hazard Zones Combined with Surface Morphodynamics

  • R. Ramlah Department of Geography, Institut Teknologi PLN, Jakarta, 11750, Indonesia
  • Redo Saputro Department of Geography, Institut Teknologi PLN, Jakarta, 11750, Indonesia

Abstract

The destruction of houses and facilities by landslide causes deaths. In this context, the level of destruction and subjective description of the characteristics can be examined through landslide parts determination. Therefore, this study aims to determine potential landslide hazard zone and houses potentially affected. Global Navigation Satellite System (GNSS) and unmanned aerial vehicle (UAV) are morphometric surveys combined with surface morphodynamics to show potential hazard zones of landslide parts. Meanwhile, Data Elevation Model (DEM) is used to delineate relict landslide and the concept is verified by field observation and orthophoto. Morphometric measurements are collected at each slope gradient by GNSS and surface morphodynamics are investigated on the entire relict landslide area by direct observation and orthophoto data. The combination of morphometric and morphodynamic data describes hazard zone of relict landslide. In addition, the integration of orthophoto and landslide hazard zone data is used to determine potentially affected houses. This study was conducted on landslides 1 and 2 with zone classifications of very high, high, low and very low. The results show that there are different conditions and the most hazardous parts of landslides 1 and 2 are the foot and body, respectively. A total of 75 and 50 houses were potentially affected by landslides 1 and 2, respectively. Identification of hazard zones based on landslide parts determines the boundaries of the area affected. The addition of surface activity processes determines the level of hazard in each of parts, while the combination of morphometric and morphodynamic data shows landslide zone.

References

Akcay, O. (2015). Landslide fissure inference assessment by ANFIS and logistic regression using UAS-based photogrammetry. ISPRS International Journal of Geo-Information, 4(4), 2131-2158. https://doi.org/10.3390/ijgi4042131

Alvioli, M., Mondini, A. C., Fiorucci, F., Cardinali, M., & Marchesini, I. (2018). Topography-driven satellite imagery analysis for landslide mapping. Geomatics, Natural Hazards and Risk, 9(1), 544-567. https://doi.org/10.1080/19475705.2018.1458050

Amatya, P., Kirschbaum, D., Stanley, T., & Tanyas, H. (2021). Landslide mapping using object-based image analysis and open source tools. Engineering geology, 282, 106000. https://doi.org/10.1016/j.enggeo.2021.10600

Amin, M. N., Umair Ashfaq, M., Mujtaba, H., Ehsan, S., Khan, K., & Faraz, M. I. (2022). Computer-aided slope stability analysis of a landslide—A Case Study of Jhika Gali Landslide in Pakistan. Sustainability, 14(20), 12954. https://doi.org/10.3390/su142012954

Azmoon, B., Biniyaz, A., & Liu, Z. (2022). Use of high-resolution multi-temporal DEM data for landslide detection. Geosciences, 12(10), 378. https://doi.org/10.3390/geosciences12100378

Cooper. R. G. (2007). Mass movements in Great Britain. Geological Conservation Review Series, No 33. https://www.cabidigitallibrary.org/doi/full/10.5555/20083115061

D’Ippolito, A., Lupiano, V., Rago, V., Terranova, O. G., & Iovine, G. (2023). Triggering of rain-induced landslides, with applications in southern Italy. Water, 15(2), 277. https://doi.or/10.3390/w15020277

de Souza, I. R., Teixeira, D. L. S., Rosa, M. B., da Silva, L. T., Ometto, J. P. H. B., Bargos, D. C., ... & Bazzan, T. (2023). Investigation of landslide hazard areas in the municipality of Cunha (Brazil) and climate projections from 2024 to 2040. Urban Climate, 52, 101710.https://doi.org/10.1016/j.uclim.2023.101710

Del Soldato, M., Bianchini, S., Calcaterra, D., De Vita, P., Martire, D. D., Tomás, R., & Casagli, N. (2017). A new approach for landslide-induced damage assessment. Geomatics, Natural Hazards and Risk, 8(2), 1524-1537. https://doi.org/10.1080/19475705.2017.1347896

Dotta, G., Fornaciai, A., Bertolini, G., Isola, I., Nannipieri, L., Favalli, M., ... & Casagli, N. (2023). Geomorphology of the upper sector of the Roncovetro active landslide (Emilia-Romagna Region, Italy). Journal of Maps, 19(1), 1-11. https://doi.org/10.1080/17445647.2023.2277898

Fariz, T. R., Jatmiko, R. H., & Mei, E. T. W. (2023). Pemanfaatan foto udara UAV untuk pemetaan kerentanan fisik rumah terhadap longsor di Sub-DAS Bompon. Jurnal Ilmu Lingkungan, 21(4), 819-829. https://doi.org/10.14710/jil.21.4.819-829

Feng, W., Tang, Y., & Hong, B. (2022). Landslide hazard assessment methods along fault zones based on multiple working conditions: A Case Study of the Lixian–Luojiabu Fault Zone in Gansu Province (China). Sustainability, 14(13), 8098. https://doi.org/10.3390/su14138098

Garnica-Peña, R. J., & Alcántara-Ayala, I. (2021). The use of UAVs for landslide disaster risk research and disaster risk management: A literature review. Journal of Mountain Science, 18(2), 482-498. https://10.1007/s11629-020-6467-7

Ghorbanzadeh, O., Didehban, K., Rasouli, H., Kamran, K. V., Feizizadeh, B., & Blaschke, T. (2020). An application of Sentinel-1, Sentinel-2, and GNSS data for landslide susceptibility mapping. ISPRS International Journal of Geo-Information, 9(10), 561. https://doi.org/10.339/ijgi9100561

Gutiérrez-Martín, A., Millán-Martín, J. P., Castedo, R., & Yenes, J. I. (2021). Calculation of micropiles and anchors to reinforce a slope in emergency situations: application in Málaga, Spain. Geomatics, Natural Hazards and Risk, 12(1), 716-740. https://doi.org/10.1080/19475705.2021.1887373

He, H., Dong, X., Du, S., Guo, H., Yan, Y., & Chen, G. (2024). Study on the stability of cut slopes caused by rural housing construction in red bed areas: a case study of Wanyuan City, China. Sustainability, 16(3), 1344. https://doi.org/10.3390/su16031344

He, Y., Wang, W., Zhang, L., Chen, Y., Chen, Y., Chen, B., ... & Zhao, Z. (2023). An identification method of potential landslide zones using InSAR data and landslide susceptibility. Geomatics, Natural Hazards and Risk, 14(1), 2185120. https://doi.org/10.1080/19475705.2023.2185120



Huang, G., Du, S., & Wang, D. (2023). GNSS techniques for real-time monitoring of landslides: A review. Satellite Navigation, 4(1), 5. https://doi.org/10.1186/s43020-023-00095-5

Ichsandya, D. B., Dimyati, M., Shidiq, I. P. A., Zulkarnain, F., Rahatiningtyas, N. S., Syamsuddin, R. P., & Zein, F. M. (2022). Landslide assessment using interferometric synthetic aperture radar in Pacitan, East Java. International Journal of Electrical and Computer Engineering, 12(3), 2614-2625. http://doi.org/10.11591/ijece.v12i3.pp2614-2625

Jacobs, L., Dewitte, O., Poesen, J., Maes, J., Mertens, K., Sekajugo, J., & Kervyn, M. (2017). Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda. Journal of African Earth Sciences, 134, 917-930. https://doi.org/10.1016/j.jafrearsci.2016.05.013

Kamal, A. M., Hossain, F., Ahmed, B., Rahman, M. Z., & Sammonds, P. (2023). Assessing the effectiveness of landslide slope stability by analysing structural mitigation measures and community risk perception. Natural Hazards, 117(3), 2393-2418. https://doi.or/10.1007/s11069-023-05947-6

Kinde, M., Getahun, E., & Jothimani, M. (2024). Geotechnical and slope stability analysis in the landslide-prone area: A case study in Sawla–Laska road sector, Southern Ethiopia. Scientific African, 23, e02071. https://doi.org/10.1016/j.sciaf.2024.e02071

Kyriou, A., Nikolakopoulos, K. G., & Koukouvelas, I. K. (2022). Timely and low-cost remote sensing practices for the assessment of landslide activity in the service of hazard management. Remote Sensing, 14(19), 4745. https://doi.org/10.3390/rs14194745

Li, H. B., Xu, Y. R., Zhou, J. W., Wang, X. K., Yamagishi, H., & Dou, J. (2020). Preliminary analyses of a catastrophic landslide occurred on July 23, 2019, in Guizhou Province, China. Landslides 17, 719–724 (2020). https://doi.org/10.1007/s10346-019-01334-0

Li, L., Lan, H., & Strom, A. (2020). Automatic generation of landslide profile for complementing landslide inventory. Geomatics, Natural Hazards and Risk, 11(1), 1000-1030. https://doi.org/10.1080/19475705.2020.1766578

Nanehkaran, Y. A., Chen, B., Cemiloglu, A., Chen, J., Anwar, S., Azarafza, M., & Derakhshani, R. (2023). Riverside landslide susceptibility overview: leveraging artificial neural networks and machine learning in accordance with the United Nations (UN) sustainable development goals. Water, 15(15), 2707. https://doi.org/10.3390/w15152707

Nefros, C., Alatza, S., Loupasakis, C., & Kontoes, C. (2023). Persistent scatterer interferometry (PSI) technique for the identification and monitoring of critical landslide areas in a regional and mountainous road network. Remote Sensing, 15(6), 1550. https://doi.org/10.3390/rs15061550

Nefros, C., Tsagkas, D. S., Kitsara, G., Loupasakis, C., & Giannakopoulos, C. (2023). Landslide Susceptibility Mapping under the Climate Change Impact in the Chania Regional Unit, West Crete, Greece. Land, 12(1), 154. https://doi.org/10.3390/land12010154

Nikolakopoulos, K. G., Kyriou, A., Koukouvelas, I. K., Tomaras, N., & Lyros, E. (2023). UAV, GNSS, and InSAR data analyses for landslide monitoring in a mountainous village in western Greece. Remote Sensing, 15(11), 2870. https://doi.org/10.3390/rs15112870


Ogita, S., Sagara, W., & Higaki, D. (2017). Shapes and Mechanisms of Large-Scale Landslides in Japan: Forecasting Analysis from an Inventory (WCoE 2014–2017). In Advancing Culture of Living with Landslides: Volume 1 ISDR-ICL Sendai Partnerships 2015-2025 (pp. 315-324). Springer International Publishing. https://doi.org/10.1007/978-3-319-59469-9_26

Oliva-González, A. O., Ruiz-Pozo, A. F., Gallardo-Amaya, R. J., & Jaramillo, H. Y. (2019). Landslide risk assessment in slopes and hillsides. Methodology and application in a real case. Dyna, 86(208), 143-152.

Pellicani, R., Argentiero, I., & Spilotro, G. (2017). GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomatics, Natural Hazards and Risk, 8(2), 1012-1033. http://dx.doi.org/10.1080/19475705.2020.1713233

Psomiadis, E., Charizopoulos, N., Efthimiou, N., Soulis, K. X., & Charalampopoulos, I. (2020). Earth observation and GIS-based analysis for landslide susceptibility and risk assessment. ISPRS International Journal of Geo-Information, 9(9), 552. https://doi.org/10.3390/ijgi9090552

Ramlah, R., Hadmoko, D. S., & Setiawan, M. A. (2020). Penilaian Tingkat Aktivitas Longsor di Sub-DAS Bompon. Media Komunikasi Geografi, 21(1), 12-26. https://doi.org/10.23887/mkg.v20i2.21360

Rong, G., Li, K., Han, L., Alu, S., Zhang, J., & Zhang, Y. (2020). Hazard mapping of the rainfall–landslides disaster Chain based on GeoDetector and Bayesian Network Models in Shuicheng County, China. Water, 12(9), 2572. https://doi.org/10.3390/w12092572

Saenkang, P., & Setiawan, H. (2022). Landslide susceptibility zone in steep slope landscape at Gunung Kidul Regency, southeast part of Yogyakarta, Indonesia. In IOP Conference Series: Earth and Environmental Science, 1071(1). https://doi.org/10.1088/1755-1315/1071/1/012002

Setyowati, D. L. (2019). Pendidikan Kebencanaan. Universitas Negeri Semarang.

Shan, Y., Xu, Z., Zhou, S., Lu, H., Yu, W., Li, Z., ... & Li, W. (2023). Landslide hazard assessment combined with InSAR Deformation: A Case Study in the Zagunao River Basin, Sichuan Province, Southwestern China. Remote Sensing, 16(1), 99. https://doi.org/10.3390/rs16010099

Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques–a review. Geoenvironmental Disasters, 7, 1-19. https://doi.org/10.1186/s40677-020-00152-0

Shi, K., Yu, B., Ma, J., Cao, W., & Cui, Y. (2023). Impacts of slope climbing of urban expansion on global sustainable development. The Innovation, 4(6). https://doi.org/10.1016/j.xinn.2023.100529

Šilhán, K. (2021). A new tree-ring-based index for the expression of spatial landslide activity and the assessment of landslide hazards. Geomatics, Natural Hazards and Risk, 12(1), 3409-3428. https://doi.org/10.1080/19475705.2021.20111790

Sun, J., Yuan, G., Song, L., & Zhang, H. (2024). Unmanned Aerial Vehicles (UAVs) in landslide investigation and monitoring: A Review. Drones, 8(1), 30. https://doi.org/10.3390/drones8010033

Thomas, J., Gupta, M., Srivastava, P. K., & Petropoulos, G. P. (2023). Assessment of a dynamic physically based slope stability model to evaluate timing and distribution of rainfall-induced shallow landslides. ISPRS International Journal of Geo-Information, 12(3), 105. https://doi.org/10.3390/10.3390/ijgi12030105

Tiwari, A., Narayan, A. B., Dwivedi, R., Dikshit, O., & Nagarajan, B. (2020). Monitoring of landslide activity at the Sirobagarh landslide, Uttarakhand, India, using LiDAR, SAR interferometry and geodetic surveys. Geocarto International, 35(5), 535-558. https://doi.org/10.1080/10106049.2018.1524516

Triatmadja, R. (2011). Tsunami: Kejadian, Penjalaran, Daya Rusak, Dan Mitigasinya. Gadjah Mada University Press

Van Tien, D., Thanh, N. K., Quang, L. H., Ha, D. N., Sassa, K., Miyagi, T., & Abe, S. (2023). Landslide risk assessment in the tropical zone of Vietnam as a contribution to the mitigation of natural disaster vulnerability. In Progress in Landslide Research and Technology, 2(1), 275-305. Cham: Springer Nature Switzerland.

Wang, P., Liu, H., Nie, G., Yang, Z., Wu, J., Qian, C., & Shu, B. (2022). Performance evaluation of a real-time high-precision landslide displacement detection algorithm based on GNSS virtual reference station technology. Measurement, 199, 111457. https://doi.org/10.1016/j.measurement.2022.11457

Xi, R., Jiang, W., Xuan, W., Xu, D., Yang, J., He, L., & Ma, J. (2023). Performance Assessment of Structural Monitoring of a Dedicated High-Speed Railway Bridge Using a Moving-Base RTK-GNSS Method. Remote Sensing, 15(12), 3132. https://doi.org/10.3390/rs1523132

Yan, T., Xiong, J., Ye, L., Gao, J., & Xu, H. (2023). Field investigation and finite element analysis of landslide-triggering factors of a cut slope composed of granite residual soil: A case study of Chongtou Town, Lishui City, China. Sustainability, 15(8), 6999. https://doi.org/10.3390/su15086999

Zhang, S., Li, C., Peng, J., Lv, Y., Wang, S., Peng, D., ... & Ouyang, C. (2024). Physical vulnerability assessment of damaged buildings to the Shenzhen catastrophic CSW landslide. Landslides, 1-17. https://doi.org/10.1007/s10346-023-02200-w
Published
2024-07-31
How to Cite
RAMLAH, R.; SAPUTRO, Redo. Identification of Relict Landslide Parts Based on Morphometric Data to Determine Potential Hazard Zones Combined with Surface Morphodynamics. Geosfera Indonesia, [S.l.], v. 9, n. 2, p. 176-192, july 2024. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/45736>. Date accessed: 20 nov. 2024. doi: https://doi.org/10.19184/geosi.v9i2.45736.
Section
Original Research Articles