2D and 3D Modelling Electrical Resistivity Tomography (ERT) of Landslide Sliding and Weak Bedding Plane Along Mountain Road North Bengkulu-Lebong, Indonesia
Abstract
The North Bengkulu-Lebong Mountain Road is prone to landslide disasters due to its geological susceptibility to land movement. This study aims to measure and assess the sliding plane on the mountain road, particularly in the layer with a soft rock structure, such as clay rock. The study utilizes 2D and 3D Electrical Resistivity Tomography (ERT) methods with the Wenner-Schlumberger configuration to measure the resistivity of the rock layers.The research includes one 2D measurement point and one 3D ERT measurement point, estimating actual resistivity values in each rock layer. Our results identify triggering and controlling factors for landslide disasters in the research area. The geological conditions consist of layers of clay (200-500 Ωm), wet clay (500-900 Ωm), dry clay (1000-3000 Ωm), weathering clay (500-1000 Ωm), aquifer (10-65 Ωm), perched aquifer (100-200 Ωm), weathering igneous rock (>10000 Ωm), and massive intrusive rock (>20000 Ωm). These geological conditions significantly influence the strength of landslide materials, with the sliding of the soft rock layer causing landslides and resulting in a large volume of landslide material. Other contributing factors to landslides in this location include slope, topography, and hydrology, with extreme slopes ranging from 33° to 55°, making it a very steep area with high potential for landslides.
References
Ariyanto, S. V., & Joni, I. (2019). Zone landslide analysis using geophysical method and analysis of soil type for disaster mitigation in Waru Pamekasan. Indonesian Journal of Applied Physics, 9(02), 68. https://doi.org/10.13057/ijap.v9i2.34520
Bell, R., Glade, T., Kruse, J. E., Garcia, A., & Hordt, A. (2006). Etudes de subsurface des glissements de terrain á l’ aide de mè thodes gè ophysiques. Applications gè oè lectriques dans I’ Alb souabe (Allemagne). Geographica Helvetica, 61(3), 201–209. https://doi.org/10.5194/gh-61-201-2006
Bellanova, J., Calamita, G., Giocoli, A., Luongo, R., Macchiato, M., Perrone, A., Uhlemann, S., & Piscitelli, S. (2018). Electrical Resistivity Imaging for the Characterization of the Montaguto Landslide (Southern Italy). Engineering Geology, 243, 272–281. https://doi.org/https://doi.org/10.1016/j.enggeo.2018.07.014
Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T., & Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: the quesnel forks landslide. Landslides, 1, 29–40. https://doi.org/10.1007/s10346-003-0008-7
BMKG. (2012). Annual Report of Bengkulu Province. Badan Meteorologi, Klimatologi, dan Geofisika Provinsi Bengkulu.
Bou-Hamdan, K. F., & Abbas, A. H. (2022). Utilizing ultrasonic waves in the investigation of contact stresses, areas, and embedment of spheres in manufactured materials replicating proppants and brittle rocks. Arabian Journal for Science and Engineering, 47(9), 11635–11650. https://doi.org/10.1007/s13369-021-06409-6
Boyd, J., Chambers, J., Wilkinson, P., Peppa, M., Watlet, A., Kirkham, M., Jones, L., Swift, R., Meldrum, P., Uhlemann, S., & Binley, A. (2021). A linked geomorphological and geophysical modelling methodology applied to an active landslide. Springer, 18(8), 2689–2704. https://doi.org/10.1007/s10346-021-01666-w
BPBD. (2019). Disaster Report of Bengkulu Province 2019. Badan Penanggulangan Bencana Daerah Provinsi Bengkulu.
Chen, X. L., Liu, C. G., Chang, Z. F., & Zhou, Q. (2016). The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology, 253, 547–550. https://doi.org/10.1016/j.geomorph.2015.01.036
Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
Eze, S. U., Abolarin, M. O., Ozegin, K. O., Bello, M. A., & William, S. J. (2022). Numerical modeling of 2-D and 3-D geoelectrical resistivity data for engineering site investigation and groundwater flow direction study in a sedimentary terrain. Modeling Earth Systems and Environment, 8(3), 3737–3755. https://doi.org/10.1007/s40808-021-01325-y
Frattini, P., Crosta, G. B., Rossini, M., & Allievi, J. (2018). Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides, 15, 1053–1070. https://doi.org/10.1007/s10346-017-0940-6
Gafoer, S., Amin, T., & Pardede, R. (2012). Geological map of the Bengkulu quadrangle, Sumatera. Pusat Penelitian dan Pengembangan Geologi.
Gafoer, S., Amin, T., & Pardede, R. (2007). Geological map of the Bengkulu quadrangle, Sumatera. Pusat Penelitian dan Pengembangan Geologi.
Grifka, J., Weigand, M., Kemna, A., & Heinze, T. (2022). Impact of an uncertain structural constraint on electrical resistivity tomography for water content estimation in landslides. Land, 11(8). https://doi.org/10.3390/land11081207
Hojat, A., Arosio, D., Ivanov, V. I., Longoni, L., Papini, M., Scaioni, M., Tresoldi, G., & Zanzi, L. (2019). Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator. Journal of Applied Geophysics, 170, 103844. https://doi.org/10.1016/j.jappgeo.2019.103844
Huang, R., & Fan, X. (2013). The Landslide Story. Nature Geoscience, 6(5), 325–326. https://doi.org/10.1038/ngeo1806
Hugenschmidt, J. (2010). Geophysics and non ‐ destructive testing for transport infrastructure , with special emphasis on ground penetrating radar. Doctoral dissertation, ETH Zurich.
Ismail, M. A., Samsudin, A. R., Mohd Nayan, K. A., & Rafek, A. G. (2002). Penggunaan Teknik Gelombang Permukaan (SASW) dalam Kajian Geologi Kejuruteraan. Bulletin of the Geological Society of Malaysia, 45(1), 329–334. https://doi.org/10.7186/bgsm45200251
Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides : a review. Bulletin Société Géologique de France, 178 (2), 101–112.
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Sdao, F., & Rizzo, E. (2003). High-resolution geolectrical tomographies in the study of Giarrossa landslide (southern Italy). Bulletin of Engineering Geology and the Environment, 62(3), 259–268. https://doi.org/10.1007/s10064-002-0184-z
Lapenna, V., & Perrone, A. (2022). Time-Lapse Electrical Resistivity Tomography ( TL-ERT ) for Landslide Monitoring : Recent Advances and Future Directions. Applied Sciences (Switzerland), 12, 1425. https://doi.org/https://doi.org/10.3390/app12031425
Lesparre, N., Boyle, A., Grychtol, B., Cabrera, J., Marteau, J., & Adler, A. (2016). Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization. Journal of Applied Geophysics, 128, 163–178. https://doi.org/10.1016/j.jappgeo.2016.03.004
Ma, S., Qiu, H., Zhu, Y., Yang, D., Tang, B., Wang, D., Wang, L., & Cao, M. (2023). Topographic Changes, Surface Deformation and Movement Process before, during and after a Rotational Landslide. Remote Sensing, 15, 662. https://doi.org/10.3390/rs15030662
Maslin, A. (2015). Monitoring Ground Vibration arising from Piling and Civil Engineering Projects. Accudata, 1–7.
Ouimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., & Chen, Z. (2007). The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Bulletin of the Geological Society of America, 119(11–12), 1462–1476. https://doi.org/10.1130/B26136.1
Paraskevoulakos, C., Roebuck, B., Hallam, K. R., & Flewitt, P. E. J. (2023). Temperature dependence of electrical resistivity, deformation, and fracture of polygranular graphite with different amounts of porosity. SN Applied Sciences, 5, 28. https://doi.org/10.1007/s42452-022-05243-1
Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: a review. Earth-Science Reviews, 135, 65–82. https://doi.org/10.1016/j.earscirev.2014.04.002
Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 IUD.
Shevnin, V., Mousatov, A., Ryjov, A., & Delgado-rodriquez, O. (2007). Estimation of clay content in soil based on resistivity modelling and laboratory measurements. Geophysical Prospecting, 55(2), 265–275. https://doi.org/10.1111/j.1365-2478.2007.00599.x
Smethurst, J. A., Smith, A., Uhlemann, S., Wooff, C., Chambers, J., Hughes, P., Lenart, S., Saroglou, H., Springman, S. M., Löfroth, H., & Hughes, D. (2017). Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes. Quarterly Journal of Engineering Geology and Hydrogeology, 50(3), 271–286. https://doi.org/10.1144/qjegh2016-080
Soeters, R., & Van Westen, C. J. (1996). Slope instability recognition, analysis and zonation. Landslides: investigation and mitigation, 247, 129-177.
Souisa, M., Hendrajaya, L., & Handayani, G. (2018). Analisis bidang longsor menggunakan pendekatan terpadu geolistrik, geoteknik dan geokomputer di Negeri Lima Ambon. Indonesian Journal of Applied Physics, 8(1), 13. https://doi.org/10.13057/ijap.v8i1.15482
Sugito, I, Z., & Jati, I. P. (2010). Investigasi bidang gelincir tanah longsor menggunakan metode geolistrik tahanan jenis di Desa Kebarongan Kec. Kemranjen Kab. Banyumas. Berkala Fisika, 13(2), 49–54.
Supper, R., Ottowitz, D., Jochum, B., Kim, J. H., Römer, A., Baron, I., Pfeiler, S., Lovisolo, M., Gruber, S., & Vecchiotti, F. (2014). Geoelectrical monitoring: An innovative method to supplement landslide surveillance and early warning. Near Surface Geophysics, 12(1), 133–150. https://doi.org/10.3997/1873-0604.2013060
Wieczorek, G. F., & Jäger, S. (1996). Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology, 15(1), 17–31. https://doi.org/10.1016/0169-555X(95)00112-I
Zhou, B. (2018). Electrical Resistivity Tomography: A Subsurface-Imaging Technique. Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics. IntechOpen. https://doi.org/10.5772/intechopen.81511
Zhou, B., & Greenhalgh, S. A. (2001). Finite element three-dimensional direct current resistivity modelling: Accuracy and efficiency considerations. Geophysical Journal International, 145(3), 679–688. https://doi.org/10.1046/j.0956-540X.2001.01412.x
Zieher, T., Markart, G., Ottowitz, D., Römer, A., Rutzinger, M., Meißl, G., & Geitner, C. (2017). Water content dynamics at plot scale – comparison of time-lapse electrical resistivity tomography monitoring and pore pressure modelling. Journal of Hydrology, 544, 195–209. https://doi.org/10.1016/j.jhydrol.2016.11.019