The Use of Sentinel-2A Images to Estimate Potential Flood Risk With A Multi-Index Approach in The Mempawah Watershed

  • Ajun Purwanto Department of Geography Education, IKIP PGRI Pontianak, Jl. Ampera No.88, Sungai Jawi, Kota Pontianak, West Kalimantan, Indonesia
  • Paiman Paiman Department of Geography Education, IKIP PGRI Pontianak, Jl. Ampera No.88, Sungai Jawi, Kota Pontianak, West Kalimantan, Indonesia
  • Agus Sudiro Department of Geography Education, IKIP PGRI Pontianak, Jl. Ampera No.88, Sungai Jawi, Kota Pontianak, West Kalimantan, Indonesia

Abstract

Natural disasters in Indonesia have become an annual cycle, an example is flooding. This study aims to determine the flood risk potential in the Mempawah watershed and the places likely to be flooded. The method used was a survey and interpretation of secondary data from topographic maps, Sentinel-2A images, and Digital Elevation Model images. Furthermore, the secondary data analysis used includes the Standardized Precipitation Index (SPI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Soil Adjusted Vegetation Index (SAVI), and Inverse Distance Weighted (IDW). The result showed that the Mempawah watershed has high, medium, and low flood risk potential. Areas with high flood potential have an area of 1,511,967 ha, those with medium potential were 2,606,778 ha, and the places with low potential were 12,644,034 ha. The changes in class user's accuracy results reached 90.909%, while those with no change were 83.333%. It was also discovered that when the satellite analysis was > 70%, it was regarded as good. This means that the accuracy of the interpretation results and flood change detection approach was also good.

References

Abdelkarim, A., Gaber, A. F. D., Alkadi, I. I., & Alogayell, H. M. (2019). Integrating remote sensing and hydrologic modeling to assess the impact of land-use changes on the Increase of flood risk: A Case study of the Riyadh–Dammam Train Track, Saudi Arabia. Sustainability, 11(21), 6003. https://doi.org/10.3390/su11216003.

Abdelkarim, A., Gaber, A. F. D., Youssef, A. M., & Pradhan, B. (2019). Flood hazard assessment of the urban area of Tabuk City, Kingdom of Saudi Arabia by integrating spatial-based hydrologic and hydrodynamic modeling. Sensors, 19(5), 1024. https://doi.org/10.3390/s19051024.

Ali, S. A., Parvin, F., Pham, Q. B., Vojtek, M., Vojteková, J., Costache, R., Linh, N. T. T., Nguyen, H. Q., Ahmad, A., & Ghorbani, M. A. (2020). GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecological Indicators, 117, 106620. https://doi.org/10.1016/j.ecolind.2020.106620.

Brath, A., Montanari, A., & Moretti, G. (2006). Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). Journal of Hydrology, 324(1–4), 141–153.

Caballero, I., Ruiz, J., & Navarro, G. (2019). Sentinel-2 satellites provide near-real time evaluation of catastrophic floods in the West Mediterranean. Water (Switzerland), 11(12). https://doi.org/10.3390/w11122499.

Caruso, G. D. (2017). The legacy of natural disasters: The intergenerational impact of 100 years of disasters in Latin America. Journal of Development Economics, 127, 209–233. https://doi.org/10.1016/j.jdeveco.2017.03.007.

Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and practices. CRC press.

Curebal, I., Efe, R., Ozdemir, H., Soykan, A., & Sönmez, S. (2016). GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355–366. https://doi.org/10.1080/10106049.2015.1047411.

Dano, U. L., Balogun, A.-L., Matori, A.-N., Wan Yusouf, K., Abubakar, I. R., Said Mohamed, M. A., Aina, Y. A., & Pradhan, B. (2019). Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water, 11(3), 615. https://doi.org/10.3390/w11030615.

Diakakis, M., Deligiannakis, G., Antoniadis, Z., Melaki, M., & ... (2020). Proposal of a flash flood impact severity scale for the classification and mapping of flash flood impacts. Journal of Hydrology, 590, 125452. https://doi.org/10.1016/j.jhydrol.2020.125452.

Faizana, F., Nugraha, A. L., & Yuwono, B. D. (2015). Pemetaan risiko bencana tanah longsor Kota Semarang. Jurnal Geodesi Undip, 4(1), 223–234.

Farhadi, H., & Najafzadeh, M. (2021). Flood risk mapping by remote sensing data and random forest technique. Water, 13(21). https://www.mdpi.com/2073-4441/13/21/3115.

Fernández, D. S., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1–4), 90–98.

Gallego, F. J., Kussul, N., Skakun, S., Kravchenko, O., Shelestov, A., & Kussul, O. (2014). Efficiency assessment of using satellite data for crop area estimation in Ukraine. International Journal of Applied Earth Observation and Geoinformation, 29, 22–30. https://doi.org/10.1016/j.jag.2013.12.013.

Ginting, J. A., & Jadera, A. M. (2018). Analisa indeks vegetasi menggunakan citra satelit Lansat 7 dan Lansat 8 menggunakan metode K-Means di Kawasan Gunung Sinabung. Indonesian Journal of Computing and Modeling, 1(1), 42–48.

Haikal, T. (2014). Analisis Normalized Difference Wetness Index (NDWI) Dengan Menggunakan Data Citra Landsat 5 Tm (Studi Kasus: Provinsi Jambi Path/Row: 125/61). Skripsi Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Pertanian Bogor.

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. https://doi.org/10.1016/j.apgeog.2015.06.015.

Huong, H. T. L., & Pathirana, A. (2013). Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrology and Earth System Sciences, 17(1), 379. https://doi.org/10.5194/hess-17-379-2013.

Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83, 947–987. https://doi.org/10.1007/s11069-016-2357-2.

Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., & Oguntunde, P. G. (2020). Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Nigeria. Hydrological Sciences Journal, 65(10), 1766–1783. https://doi.org/10.1080/02626667.2020.1764960.

Laurensz, B., Lawalata, F., & Prasetyo, S. Y. J. (2019). Potensi Resiko Banjir dengan Menggunakan Citra Satelit (Studi Kasus: Kota Manado, Provinsi Sulawesi Utara). Indonesian Journal of Computing and Modeling, 2(1), 17–24.

Li, Y., Martinis, S., Plank, S., & Ludwig, R. (2018). An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 73, 123-135. https://doi.org/10.1016/j.jag.2018.05.023.

Mao, D., & Cherkauer, K. A. (2009). Impacts of land-use change on hydrologic responses in the Great Lakes region. Journal of Hydrology, 374(1–2), 71–82.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22), 179–183.

Muhari, A. (2021). Sebanyak 674 Rumah di 5 Kecamatan Terdampak Banjir di Kabupaten Mempawah. Plt. Kepala Pusat Data, Informasi Dan Komunikasi Kebencanaan BNPB. https://bnpb.go.id/berita/sebanyak-674-rumah-di-5-kecamatan-terdampak-banjir-di-kabupaten-mempawah. Accessed April 18, 2023.

Mukherjee, F., & Singh, D. (2020). Detecting flood prone areas in Harris County: A GIS based analysis. GeoJournal, 85(3), 647–663. https://doi.org/10.1007/s10708-019-09984-2.

Munawar, H. S., Hammad, A. W. A., & Waller, S. T. (2022). Remote Sensing Methods for Flood Prediction: A Review. Sensors, 22(3). https://doi.org/10.3390/s22030960.

Nguyen-Huy, T., Kath, J., Nagler, T., Khaung, Y., Aung, T. S. S., Mushtaq, S., Marcussen, T., & Stone, R. (2022). A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar. Remote Sensing Applications: Society and Environment, 26, 100733. https://doi.org/10.1016/j.rsase.2022.100733.

Ovando, A., Martinez, J. M., Tomasella, J., Rodriguez, D. A., & von Randow, C. (2018). Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands. International Journal of Applied Earth Observation and Geoinformation, 69, 27-40. https://doi.org/10.1016/j.jag.2018.02.013.

Pasaribu, J. M., & Haryani, N. S. (2012). Perbandingan Teknik Interpolasi DEM SRTM dengan Metode Inverse Distance Weighted (IDW), Natural Neighbor dan Spline (Comparison of DEM SRTM Interpolation Techniques Using Inverse Distance Weighted (IDW), Natural Neighbor and Spline Method). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 9(2).

Paul, G. C., Saha, S., & Hembram, T. K. (2019). Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi river and their comparison. Remote Sensing in Earth Systems Sciences, 2, 120-146 .https://doi.org/10.1007/s41976-019-00018-6.

Purwanto, A., Rustam, R., Andrasmoro, D., & Eviliyanto, E. (2022). Flood risk mapping using GIS and multi-criteria analysis at Nanga Pinoh West Kalimantan Area. Indonesian Journal of Geography, 54(3). https://doi.org/10.22146/ijg.69879.

Rawat, J. S., Biswas, V., & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 16(1), 111–117. https://doi.org/10.1016/j.ejrs.2013.04.00.

Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2020). Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment, 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280.

Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275.

Rivas-Fandiño, P., Acuña-Alonso, C., Novo, A., Pacheco, F. A. L., & Álvarez, X. (2023). Assessment of high spatial resolution satellite imagery for monitoring riparian vegetation: riverine management in the smallholding. Environmental Monitoring and Assessment, 195(1), 81. https://doi.org/10.1007/s10661-022-10667-8.

Saidah, H., Budianto, M. B., & Hanifah, L. (2017). Analisa indeks dan sebaran kekeringan menggunakan metode standardized precipitation index (SPI) dan geographical information system (GIS) Untuk Pulau Lombok. Jurnal Spektran, 5(2), 173–179.

Sajjad, A., Lu, J., Chen, X., Chisenga, C., & Mazhar, N. (2023). Rapid assessment of riverine flood inundation in Chenab floodplain using remote sensing techniques. Geoenvironmental Disasters, 10(1), 1–18. https://doi.org/10.1186/s40677-023-00236-7.

Saravi, S., Kalawsky, R., Joannou, D., Rivas Casado, M., Fu, G., & Meng, F. (2019). Use of artificial intelligence to improve resilience and preparedness against adverse flood events. Water, 11(5), 973. https://doi.org/10.3390/w11050973.

Schnebele, E., & Cervone, G. (2013). Improving remote sensing flood assessment using volunteered geographical data. Natural Hazards and Earth System Sciences, 13(3), 669–677. https://doi.org/10.5194/nhess-13-669-2013.

Shah, S. A., Seker, D. Z., Hameed, S., & Draheim, D. (2019). The rising role of big data analytics and IoT in disaster management: recent advances, taxonomy and prospects. IEEE Access, 7, 54595–54614. https://doi.org/10.1109/ACCESS.2019.2913340.

Sheng, J., & Wilson, J. P. (2009). Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Natural Hazards, 48(1), 41–57.

Sholihah, Q., Kuncoro, W., Wahyuni, S., Suwandi, S. P., & Feditasari, E. D. (2020). The analysis of the causes of flood disasters and their impacts in the perspective of environmental law. IOP Conference Series: Earth and Environmental Science, 437(1), 12056.10.1088/1755-1315/437/1/012056.

Sinaga, S. H., Suprayogi, A., & Haniah, H. (2018). Analisis ketersediaan ruang terbuka hijau Dengan Metode Normalized Difference Vegetation Index dan Soil Adjusted Vegetation Index Menggunakan Citra Satelit Sentinel-2A (Studi Kasus: Kabupaten Demak). Jurnal Geodesi Undip, 7(1), 202–211.

Sivanpillai, R., Jacobs, K. M., Mattilio, C. M., & Piskorski, E. V. (2021). Rapid flood inundation mapping by differencing water indices from pre-and post-flood Landsat images. Frontiers of Earth Science, 15, 1-11. https://doi.org/10.1007/s11707-020-0818-0.

Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), 47. https://doi.org/10.1007/s12665-018-8003-4.

Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2015). Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29, 1149–1165. https://doi.org/10.1007/s00477-015-1021-9.

Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. Plos One, 15(3), e0229153. https://doi.org/10.1371/journal.pone.0229153.

Widiasari, I. R., & Nugroho, L. E. (2017). Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining. 2017 International Conference on Innovative and Creative Information Technology (ICITech), 1–5.10.1109/INNOCIT.2017.8319150.

Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171. https://doi.org/10.1016/j.rse.2014.01.011.
Published
2023-04-30
How to Cite
PURWANTO, Ajun; PAIMAN, Paiman; SUDIRO, Agus. The Use of Sentinel-2A Images to Estimate Potential Flood Risk With A Multi-Index Approach in The Mempawah Watershed. Geosfera Indonesia, [S.l.], v. 8, n. 1, p. 83-101, apr. 2023. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/37156>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.19184/geosi.v8i1.37156.
Section
Original Research Articles