Analysis of Sea Surface Dynamics during the Coastal Floods in Manado

Abstract

Coastal flooding is one of the serious problems facing most coastal areas in the world. On January 17 and December 7, 2021, coastal flooding hit the coastal area of Manado, North Sulawesi, Indonesia. The disaster disrupted economic activities on the coast of Manado Bay. This study analyzed the dynamics of the atmosphere and the sea during coastal flood events using water level data from the Geospatial Information Agency, which was then filtered to separate residual and atmospheric tide, and oceanographic reanalysis data of Wavewatch-III from BMKG Ocean Forecast System (OFS). The results show that events on January 17 and December 7, 2021, coincided with the occurrence of the maximum tide. The residual water level shows a significant value of around 0.2 – 0.3 m, indicating the influence of atmospheric phenomena on sea level rise. According to oceanographical data, the local wind is the main factor of flood occurrence, which is shown by wind speed data which increased wave height significantly to 1,5 m on January 17, 2021, and to 2,0 m on December 7, 2021, around Manado Bay coast. Another factor that might contribute to the event is Manado's land morphology. Further study must be conducted to discover the influence of land morphology on coastal floods.

References

Anderson, D., Rueda, A., Cagigal, L., Antolinez, J. A. A., Mendez, F. J., & Ruggiero, P. (2019). Time‐varying emulator for short and long‐term analysis of coastal flood hazard potential. Journal of Geophysical Research: Oceans, 124(12), 9209-9234. https://doi.org/10.1029/2019JC015312.

Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., ... & Krajewski, W. F. (2021). Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Resources Research, 57(2), e2020WR028673. https://doi.org/10.1029/2020WR028673.

Bilskie, M. V., Hagen, S. C., Medeiros, S. C., & Passeri, D. L. (2014). Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41(3), 927-934. https://doi.org/10.1002/2013GL058759.

Codiga, D.L., (2011). Unified Tidal Analysis and Prediction Using the UTide MatlabFunctions. Technical Report 2011-01. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. 59p. ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf.

de Lima, A. D. S., Khalid, A., Miesse, T. W., Cassalho, F., Ferreira, C., Scherer, M. E. G., & Bonetti, J. (2020). Hydrodynamic and waves response during storm surges on the Southern Brazilian coast: A hindcast study. Water, 12(12), 3538. https://doi.org/10.3390/w12123538.

Erikson, L. H., Espejo, A., Barnard, P. L., Serafin, K. A., Hegermiller, C. A., O'Neill, A., ... & Mendez, F. J. (2018). Identification of storm events and contiguous coastal sections for deterministic modeling of extreme coastal flood events in response to climate change. Coastal Engineering, 140, 316-330. https://doi.org/10.1016/j.coastaleng.2018.08.003.

Ghanbari, M., Arabi, M., Obeysekera, J., & Sweet, W. (2019). A coherent statistical model for coastal flood frequency analysis under nonstationary sea level conditions. Earth's Future, 7(2), 162-177. https://doi.org/10.1029/2018EF001089.

Gustari, I., Hadi, T. W., Hadi, S., & Renggono, F. (2012). Akurasi prediksi curah hujan harian operasional di Jabodetabek: Perbandingan dengan model WRF. Jurnal Meteorologi dan Geofisika, 13(2). http://dx.doi.org/10.31172/jmg.v13i2.126.

Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke, D., & Hinkel, J. (2020). Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-67736-6.

Kulp, S. A., & Strauss, B. H. (2019). New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature communications, 10(1), 1-12. https://doi.org/10.1038/s41467-019-12808-z.

Kurniawan, A. P., Jasin, M. I., & Mamoto, J. D. (2019). Analisis Data Pasang Surut di Pantai Sindulang Kota Manado. JURNAL SIPIL STATIK, 7(5).

Lang, A., & Mikolajewicz, U. (2019). The long-term variability of extreme sea levels in the German Bight. Ocean Science, 15(3), 651-668. https://doi.org/10.5194/os-15-651-2019.

Liu, W. C., & Huang, W. C. (2021). Tide–surge and wave interaction around the Taiwan coast: insight from Typhoon Nepartak in 2016. Natural Hazards, 107(2), 1881-1904. https://doi.org/10.1007/s11069-021-04663-3.

Manginsela, F. B., Rondo, M., Randonuwu, A. B., Kambey, A. D., & Lumuindong, F. (2016). Ekologi Perairan Teluk Manado. Manado: Penerbit Fakultas Perikanan dan Ilmu Kelautan.

Marcos, M., Rohmer, J., Vousdoukas, M. I., Mentaschi, L., Le Cozannet, G., & Amores, A. (2019). Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophysical Research Letters, 46(8), 4356-4364. https://doi.org/10.1029/2019GL082599.

McCully, J. G. (2006). Beyond the Moon: A Conversational, Common Sense Guide to Understanding the Tides. Singapore: World Scientific Publishing.

Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., ... & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338-342. https://doi.org/10.1038/s41558-021-00993-z.

Ningsih, N. S., Suryo, W., & Anugrah, S. D. (2011). Study on characteristics of residual water level in Jakarta, Semarang, and Surabaya waters–Indonesia and its relation to storm events in November 2007. Int. J. Basic Appl. Sci, 11(5), 19-25.

Pratama, M. B. (2019). Tidal flood in Pekalongan: Utilizing and operating open resources for modelling. In IOP Conference Series: Materials Science and Engineering (Vol. 676, No. 1, p. 012029). https://doi.org/10.1088/1757-899X/676/1/012029.

Rueda, A., Vitousek, S., Camus, P., Tomás, A., Espejo, A., Losada, I. J., ... & Mendez, F. J. (2017). A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing. Scientific reports, 7(1), 1-8. https://doi.org/10.1038/s41598-017-05090-w.

Sampurno, J., Vallaeys, V., Ardianto, R., & Hanert, E. (2022). Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta. Biogeosciences, 19(10), 2741-2757. https://doi.org/10.5194/bg-19-2741-2022.

Saragih, I. J. A., & Dafitra, I. (2021). Analisis Dinamika Permukaan Laut Saat Kejadian Banjir Pesisir di Padang Tanggal 3 Desember 2017. Buletin GAW Bariri, 2(1), 7-15. https://doi.org/10.31172/bgb.v2i1.33.

Schlef, K. E., Moradkhani, H., & Lall, U. (2019). Atmospheric circulation patterns associated with extreme United States floods identified via machine learning. Scientific reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-43496-w.

Supriatin S. (2023). Banjir Rob Terjang Manado, 21 Rumah dan 113 Jiwa Terdampak, 8 December 2021, Retrieved from https://www.merdeka.com/peristiwa/banjir-rob-terjang-manado-21-rumah-dan-113-jiwa-terdampak.html accessed on 25 February 2023.

Sutrisno, D., Rahadiati, A., Rudiastuti, A. W., & Dewi, R. S. (2020). Urban coastal flood-prone mapping under the combined impact of tidal wave and heavy rainfall: a proposal to the existing national standard. ISPRS International Journal of Geo-Information, 9(9), 525. https://doi.org/10.3390/ijgi9090525.

Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., & Fletcher, C. H. (2020). Sea-level rise exponentially increases coastal flood frequency. Scientific reports, 10(1), 1-17. https://doi.org/10.1038/s41598-020-62188-4.

Triana, K., & Janottama, S. Z. (2021). The Projection of Sea Level Rise in Southeast Asia’s Coastal Cities using Satellite Altimetry Data (1992-2020). In Proceedings of National Colloquium Research and Community Service, 5, 14-18. https://doi.org/10.33019/snppm.v5i0.

Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-01362-7.

Wibowo, S. N. E., Mamuaya, G. E., & Djamaluddin, R. (2018). Land Subsidence Analysis of Reclaimed Land using Time-Lapse Microgravity Anomaly in Manado, Indonesia. Forum Geografi, 32(1), 53-63. https://doi.org/10.23917/forgeo.v32i1.5882.

Wibowo, E. A. (2021). Kota Bisnis Manado Dihantam Banjir Rob. Retrieved from https://nasional.tempo.co/read/1424231/kota-bisnis-manado-dihantam-banjir-rob accessed on 25 February 2023.

Xu, H., Tian, Z., Sun, L., Ye, Q., Ragno, E., Bricker, J., Mao, G., Tan, J., Wang, J., Ke, Q., Wang, S., & Toumi, R. (2022). Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai. Natural Hazards and Earth System Sciences, 22(7), 2347-2358. https://doi.org/10.5194/nhess-22-2347-2022.

Xu, L., Ding, S., Nitivattananon, V., & Tang, J. (2021). Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China. Land, 10(8), 866. https://doi.org/10.3390/land10080866.
Published
2023-04-18
How to Cite
AZANI, Audia Azizah; EFENDI, Usman. Analysis of Sea Surface Dynamics during the Coastal Floods in Manado. Geosfera Indonesia, [S.l.], v. 8, n. 1, p. 46-60, apr. 2023. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/35091>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.19184/geosi.v8i1.35091.
Section
Original Research Articles