Analysis of the Dynamics of Water Flow and Suspension Flow Discharge in Volcano Watershed with Settlement Land Use

  • La Ode Hadini Department of Geography, Universitas Halu Oleo, Kendari, 93132, Indonesia http://orcid.org/0000-0002-4815-4530
  • Junun Sartohadi Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora Bulaksumur, Yogyakarta, 55281, Indonesia http://orcid.org/0000-0002-0059-8335
  • Muhammad Anggri Setiawan Faculty of Geography, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia
  • Djati Mardiatno Faculty of Geography, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia http://orcid.org/0000-0001-7401-1886
  • Nugroho Crhristanto Faculty of Geography, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia

Abstract

Suspension flow into the upstream of volcano watershed is sensitive to land use. In Indonesia, a settlement is a form of land use in several volcanic landscapes. There is currently no detailed study on the suspension flow sediment from the settlement land use. The purpose of this study is to investigate the characteristics of the relationship between water and suspension flow discharge. The study was conducted through the measurements at a gully outlet that produced 747 suspension load data. For each rainfall event, suspension load measurements were made in the field, followed by laboratory analysis. Additionally, field surveys were used to determine the characteristics of settlement land use and the water flow into the gully system. According to the findings, the peak flow discharge corresponds to the peak suspension discharge, the peak flow discharge comes before the peak suspension discharge, and the peak flow discharge happens after the peak suspension discharge. The average time lag between initial rainfall events and suspension flow was 10.36 minutes, and the suspension peak content varied by an average of 2.22 gl-1. The grain size was also dominated by the clay fraction, averaging 67.86% on the ascending branch and 67.82% on the descending branch.

References

Alstrom, K. & Åkerman, A.B. (1992) Contemporary soil erosion rates on arable land in Southern Sweden. Geografiska Annaler: Series A, Physical Geography, 74:2-3, 101-108. https://doi.org/10.1080/04353676.1992.11880354.

Arianti, F.D., Suratman S., Martono, E., & Suprayogi, S. (2012). Dampak pengelolaan lahan pertanian terhadap hasil sedimen di daerah aliran Sungai Galeh Kabupaten Semarang. Jurnal Manusia dan Lingkungan, 19(3), 238-246.

Arsyad, S. (2006). Konservasi Tanah dan Air. Bandung: IPB Press.

Asdak, C. (2002). Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta: Gadjah Mada University Press.

Asriningrum, W., Noviar, H., & Suwarsono.(2004). Pengembangan metode zonasi daerah bahaya letusan gunung api studi kasus Gunung Merapi. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 1(1), 66–75.

Bachri, S., Utaya, S., Nurdiansyah, F.D., Nurjanah, A.E., Tyas, LWN., Purnama, D.S., & Adillah, A.A. (2017). Analisis dan optimalisasi potensi lahan pertanian sebagai kajian dampak positif erupsi Gunungapi Kelud 2014. Majalah Geografi Indonesia, 31(2), 33-43. https://doi.org/10.22146/mgi.27738.

Badan Geologi Indonesia. (2011). Data Dasar Gunung Api Indonesia, Edisi ke-2. Kementrian Energi dan Sumber Daya Mineral, Bandung.

Bisantino, T., Bingner, R., Chouaib, W., Gentile, F., & Liuzzi, G. T. (2013). Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the annagnps model. Land Degradation & Development. 26(4), 340-355. https//:doi.org/10.1002/ldr.2213.

Candraningrum, Z.R. (2013). Pengaruh ketebalan material tanah dan kemiringan lereng terhadap potensi longsor pada setiap satuan bentuklahan di Sub DAS Kodil, Jawa Tengah. Skripsi. Yogyakarta: Universitas Gadjah Mada.

Castillo, V.M., Mosch, W.M., García, C.C., Barberá, G.G., Cano, JAN., & Bermúdez, F.L. (2007). Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). CATENA, 70(3), 416–427. http://dx.doi.org/10.1016/j.catena.2006.11.009.

Dariah, A., Subagyo, H.,Tafakresnanto & Marwanto, S. (2003). Kepekaan tanah terhadap erosi. Jurnal Akta Agrosia, 8(2).

Fryirs, K.A., & Brierley, G.J. (2013). Geomorphic Analysis of River Systems 1st ed., A John Wiley & Sons, Ltd., Publication.

Gao, P., Deng, J., Chai, X., Mu, X., Zhao, G., Shao, H., & Sun, W. (2017). Dynamic sediment discharge in the Hekou – Longmen region of Yellow River and soil and water conservation implications. Science of the Total Environment, 578, 56–66. http://dx.doi.org/10.1016/j.scitotenv.2016.06.128.

Gumiere, S.J., Bailly, J.S., Cheviron, B., Raclot, D., Bissonnais, Y.L., & Rousseau, A.N. (2015). Evaluating the impact of the spatial distribution of land management practices on water erosion : case study of a Mediterranean Catchment. J. Hydrol. Eng., 20(6), 1–10.

Hadini, L.O., Sartohadi, J., Setiawan, M.A, & Mardiatno, D. (2019). Characteristics of sediment flow and soil loss of the volcanic landscape watershed with agroforestry landuse, Ecology, Environment and Conservation, 25(3), 1062–1071.

Hadini, L.O., Sartohadi, J., Setiawan, M.A., & Mardiatno, D. (2021). The Dynamics of flow
discharge and suspension flow discharge in volcano watershed with agroforestry land cover. Civil and Environmental Science Journal (Civense), 4(2), 141-153. https://doi.org/10.21776/ub.civense.2021.00402.4.

Handayani, L.D.W., Tahyono, B., & Trisasongko, B.H. (2013). Interpretasi bentuklahan gunungapi guntur menggunakan Citra Ikonos. J. Tanah Lingkungan, 15(2), 76–83.

Handayani, W., & Indrajaya, Y. (2011). Analisis hubungan curah hujan dan discharge sub sub das Ngatabaru, Sulawesi Tengah. Jurnal Penelitian Hutandan Koservasi Alam, 8(2), 143–153.

Handayani, Y.L., Jayadi, R., & Triatmojo, B. (2005). optimasi tata guna lahan dan penerapan rekayasa teknik dalam analisa banjir di Daerah Aliran Sungai: Studi Kasus Daerah Aliran Sungai Ciliwung Hulu Di Bendung Katulampa. Manusia dan Lingkungan, 12(2), 53–61.

Haregeweyn, N., Melesse, B., Tsunekawa, A., Tsubo, M., Meshesha, D., & Balana, B.B. (2012). Reservoir sedimentation and its mitigating strategies: A case study of Angereb reservoir (NW Ethiopia). Journal of Soils and Sediments, 12(2), 291–305. https://doi.org/10.1007/s11368-011-0447-z.

Haridjadja O, Murtilaksono, K., Sudarmo, & Rahman, L.M. (1990). Hidrologi Pertanian. Jurusan Tanah. Fakultas Pertanian. Bogor : Institut Pertanian Bogor.

Hergarten, St., Paul, G., & Neugebauer, H.J. (2000). Modeling surface runoff. In Schmidt, J. (ed). Soil Erosion, Application of Physically Based Models. Germany: Springer.

Herschy, R.W., 2009. Streamflow Measurement Third edit. T. & Francis, ed., 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN.

Kellner, E., & Hubbart, J. A. (2018). Spatiotemporal variability of suspended sediment particle size in a mixed-land-use watershed. Science of the Total Environment, 615, 1164–1175. https://doi.org/10.1016/j.scitotenv.2017.10.040.

Kimmins, J.P., Rempel, R.S., Welham, C.V.J., Seely, B., & Van Rees, K.C.J. (2007). Biophysical sustainability, process-based monitoring and forest ecosystem management decision support systems. The Forestry Chronicle, 83(4), 502–514. https://doi.org/10.5558/tfc83502-4.

Kironoto, B.A. (2008). Konsentrasi sedimen suspensi rata-rata kedalaman berdasarkan pengukuran 1, 2, dan 3 titik pada aliran seragam saluran terbuka. Dinamika Teknik Sipil, 8(1), 59–71.

Li, X., Wang, H., Zhang, L., & Wu, B. (2015). Soil erosion and sediment-yield prediction at Basin Scale in Upstream Watershed of Miyun Reservoir. J. Hydrol. Eng., 20(6), 1–7. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001098.

Maltsev, K., & Yermolaev, O. (2020). Assessment of soil loss by water erosion in small river basins in Russia. Catena, 195, 104726. https://doi.org/10.1016/j.catena.2020.104726.

Mondal, A., Khare, D., Kundu, S., Meena, P. K., Mishra, P. K., & Shukla, R. (2015).impact of climate change on future soil erosion in different slope, land use, and soil-type conditions in a Part of the Narmada River Basin, India. J. Hydrol. Eng., 20(6), 1–12. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001065.

Maulana, R.A., Lubis, K.S., & Marbun, P. (2014). Uji korelasi antara discharge aliran sungai dan konsentrasi sedimen melayang pada Muara Sub DAS Padang di Kota Tebing Tinggi. Jurnal Online Agroekoteknologi, 2(2337), 1518–1528.

Ma’wa, J., & Andawayanti, U. (2009). Studi pendugaan sisa usia guna waduk sengguruh dengan pendekatan erosi dan sedimentasi. Disertasi. Malang : Universitas Brawijaya.

Mbaya, L.A., Ayuba, H.K., & Abdullahi, J. (2012). An Assessment of gully erosion in Gombe Town, Gombe State. Journal of Geography and Geology, 4(3), 110–122.

Merritt, W.S., Lecther, R.A., & Jakeman, AJ. (2003). A Review of erosion and sediment transport model. Environment Model Software, 18, 761-799.

Miller, J.R., Mackin, G., & Miller, S.M.O. (2015). Application of Geochemical Tracers to Fluvial Sediment, London: Springer.

Morgan, R.P.C. (2005). Soil Erosion and Conservation: Third Edition. USA; Blackwell.

Nandini, R. & Narendra, B.H. (2012). Karakteristik lahan kritis bekas letusan gunung batur di Kabupaten Bangli, Bali. Penelitian hutan dan Konservasi Alam, 9(3), pp.199–211.

Neno, A.K., Herman, H., & Wahid, A. (2016). Hubungan discharge air dan tinggi muka air di Sungai Lambagu Kecamatan Tawaeli Kota Palu. Warta Rimba, 4 (2), 1–8.

Nicótina, L., Tarboton, D.G., Tesfa, T.K., & Rinaldo, A. (2011). Hydrologic controls on equilibrium soil depths. Water Resources Research, 47(4), 1–11. https://doi.org/10.1029/2010WR009538.

Nocoń, W. (2016). Quantitative monitoring of batch sedimentation based on fractional density changes. Powder Technology, 292, 1–6. https://doi.org/10.1016/j.powtec.2016.01.010.

Nugroho, S.H. & Basit, A. (2014). Sebaran sedimen berdasarkan analisis ukuran butir di Teluk Weda, Maluku Utara. Jurnal Ilmu dan Teknologi Kelautan Tropis, 6(1), 229–240.

Oktarina, N.R. (2005). Analisis hidrograf limpasan akibat variasi intensitas hujan dan kemiringan lahan (kajian laboratorium dengan simulator hujan). Jurnal Teknik Sipil dan Lingkungan. 3(1).

Panagos, P, Borrelli, P, Poesen, J, Ballabio, Lugato, E., Meusburger, K., Montanarella, L., & Allewl, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. http://doi.org/10.1016/j.envsci.2015.08.012.

Parsons, A.J., & Wainwright, J. (2000). Modeling Surface Runoff. In Schmidt, J. (ed). Soil Erosion, Application of Physically Based Models. Germany: Springer.

Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentina, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50, 91-133. http://dx.doi.org/10.1016/S0341-8162(02)00143-1.

Rusdi, Alibasyah, M. R., & Abubakar, K. (2013). Evaluasi degradasi lahan diakibatkan erosi pada areal pertanian di Kecamatan Lembah Seulawah Kabupaten Aceh Besar. Jurnal Konservasi Sumber Daya Lahan. 1(1), 24–39.

Sambodo, A. P., & Arpornthip, T. (2021). Increasing the efficiency of detailed soil resource mapping on transitional volcanic landforms using a geomorphometric approach. Applied and Environmental Soil Science, 2021. https://doi.org/10.1155/2021/8867647.

Sartohadi, J. (2013). Genesis tanah supertebal dan kaitannya dengan longsor dalam di Hulu DAS Bogowonto Jawa Tengah. Hibah Penelitian Dosen. LPPM UGM Yogyakarta.

Sartohadi, J., & Pratiwi, E.S. (2014). Bunga Rampai Penelitian: Pengelolan Bencana Kegunungapian Kelud pada Periode Krisis Erupsi 2014. Yogyakarta: Pustaka Pelajar.

Soemarto, C.D. (1999). Hidrologi Teknik. Malang : Pusat Pendidikan Manajemen dan Teknologi Terapan.
Soewarno. (1991). Hidrologi pengukuran dan pengukuran Daerah Aliran Sungai. Bandung: Nova.

Steegen, A., Govers, G., Nachtergaele, J., Takken, I., & Poesen, J. (2000). Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium. Geomorphology, 33, 25–36.

Suripin. (2000). Evaluasi penggunaan teknik discharge-lengkung sedimen dalam memprediksi sedimen layang. Jurnal dan Pengembangan Keairan, 1(7), 35-43.

Tillinghast, E.D., Hunt, W.F., & Jennings, G.D. (2011). Stormwater Control Measure ( SCM ) design standards to limit stream erosion for Piedmont North Carolina. Journal of Hydrology, 411(3-4), 185–196. http://dx.doi.org/10.1016/j.jhydrol.2011.09.027.

Triatmodjo, B. (2013). Hidrologi Terapan. Cetakan ke-3. Yogyakarta : Beta Offset.

Verma, A.K., & Jha, M.K. (2015). Evaluation of a GIS-Based watershed model for streamflow and sediment-yield simulation in the Upper Baitarani River Basin of Eastern India. J. Hydrol. Eng., 20(6). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001134.

Verstraeten, G., Prosser, I.P., & Fogarty, P. (2007). Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology, 334(3-4), 440–454. https://doi.org/10.1016/j.jhydrol.2006.10.025.

Walker, S. & Mostaghimi, S. (2009). Watershed-Based Systems. In Moore, K.M (ed). The Sciences and Art of Adaptive Management Innovating for Sustainable Agriculture and Natural Resource Management. Ankeny, Iowa: Soil and Water Conservation Society.

Wang, J., Huang, J., Wu, P., Zhao, X., Gao, X., Dumlao, M., & Si, B.C. (2015). Effects of soil managements on surface runoff and soil water content in jujube orchard under simulated rainfalls. CATENA, 135, 193–201. https://doi.org/10.1016/j.catena.2015.07.025.

Wardhana, M.G.K. (2016). Efektivitas teknik konservasi dalam pengendalian erosi sebagai upaya pengelolaan DAS dengan pendekatan geomorfologi (Kasus DAS Bompon Kabupaten Magelang Provinsi Jawa Tengah). Thesis. Yogyakarta: Universitas Gadjah Mada.

Wulandari, D.A., Suripin, & Syafrudin. (2005). Evaluasi penggunaan lengkung laju discharge-sedimen (sediment-dischargerating curve) Untuk Memprediksi Sedimen Layang. Jurnal dan Pengembangan Keairan, 12(1).

Yan, Q., Lei, T., Yuan, C., Lei, Q., Yang, X., Zhang, M., Su, G., & An, L. (2015). Effects of watershed management practices on the relationships among rainfall, runoff, and sediment delivery in the hilly-gully region of the Loess Plateau in China. Geomorphology, 228, 735–745. https://doi.org/10.1016/j.geomorph.2014.10.015.

Zhou, H., Chang, W., & Zhang, L. (2016). Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources. Geomorphology, 266, 11–19. https://doi.org/10.1016/j.geomorph.2016.05.007.
Published
2023-04-18
How to Cite
HADINI, La Ode et al. Analysis of the Dynamics of Water Flow and Suspension Flow Discharge in Volcano Watershed with Settlement Land Use. Geosfera Indonesia, [S.l.], v. 8, n. 1, p. 19-34, apr. 2023. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/30921>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.19184/geosi.v8i1.30921.
Section
Original Research Articles