Worldwide Efficiency of Bioremediation Techniques for Organic Pollutants in Soil: A Brief Review

  • Sana Akhtar Department of Environmental Sciences, Kinnaird College for Women, 93- Jail road, Lahore, Pakistan
  • Ayesha Mohsin Department of Environmental Sciences, Kinnaird College for Women, 93- Jail road, Lahore, Pakistan
  • Aiman Riaz Department of Environmental Sciences, Kinnaird College for Women, 93- Jail road, Lahore, Pakistan
  • Farhan Mohsin Oslo Metropolitan University, Pilestredet Park 0890, 0176, Oslo, Norway

Abstract

Soil pollution is a major human and environmental issue. Among the several components of soil degradation, organic contaminant in soil is regarded as a significant factor that causes considerable damage to the environment along with several health dangers to humans. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polychlorinated dibenzofurans, poly-brominated biphenyls, organic fuels particularly gasoline and diesel, herbicides, insecticides (carbamate and organophosphorus) are by far the most common forms of organic pollutants identified in soils. The employment of living organisms such as microorganisms and plants in bioremediation technology reduces/degrades, eliminates, and transforms pollutants found in soils, sediments, and water. This review examine and critically view the efficiency of bioremediation techniques for the polluted sites. The most common bioremediation technologies for the treatment of organic pollutants are bioventing, bio-sparging, bio-slurping, bio-augmentation, phytoremediation, bio-immobilization, bio-sorption, composting, land farming, aerobic degradation, co-metabolic and natural attenuation. The efficiency of these techniques depends on the pH, type of soil, level of oxygen, any other electron acceptors, temperature, and the nutrients. Selection of the treatment process depends upon the type of pollutant, concentration of the contaminant, site and source of pollution. All the treatment techniques are not good for all type of pollutants. Cost-effective techniques are mostly used worldwide as they have more public acceptance. Pump and treat methods were mostly used in Past but due to its non-reliability and excessive cost, these techniques are no longer in use.

References

Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Phytoremediation for the elimination of metals, pesticides, PAHs, and other pollutants from wastewater and soil. In V. Kumar, M. Kumar & R. Prasad (Eds.), Phytobiont and ecosystem restitution. Springer.

Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, bio stimulation and Bioagumentation: A review. International Journal of Environmental Bioremediation and Biodegradation, 3, 28–39.

Alvarenga, P., Ferreira, C., Mourinha, C., Palma, P., & de Varennes, A. (2018). Chemical and ecotoxicological effects of the use of drinking-water treatment residuals for the remediation of soils degraded by mining activities. Ecotoxicology and Environmental Safety, 161, 281–289. https://doi.org/10.1016/j.ecoenv.2018.05.094.

American Society of Transplant Surgeons Incorporated. (2010). POL contaminated soil land farm.

Amoakwah, E., Van Slycken, S., & Essumang, D. K. (2014). Comparison of the solubilizing efficiencies of some pH lowering (sulphur and (NH4)2SO4) amendments on Cd and Zn mobility in soils. Bulletin of Environmental Contamination and Toxicology, 93(2), 187–191. https://doi.org/10.1007/s00128-014-1319-1.

Aparicio, J. D., Simon Sola, M. Z., Benimeli, C. S., Julia Amoroso, M., & Polti, M. A. (2015). Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane. Ecotoxicology and Environment Safety, 116, 34–39.

Arulazhagan, P., & Vasudevan, N. (2011). Biodegradation of polycyclic aromatic hydrocarbons by a halo tolerant bacterial strain Ochrobactrum sp. VA1. Marine Pollution Bulletin, 62(2), 388–394. https://doi.org/10.1016/j.marpolbul.2010.09.020.

Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068.

Asiegbu, P. O., Paterson, A., & Smith, J. E. (2015). The effects of co-fungal cultures and supplementation with carbohydrate adjuncts on lignin biodegradation and substrate digestibility. World Journal of Microbiology and Biotechnology, 12(3), 273–279.

Awa, S. H., & Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism:A review. Water, Air, and Soil Pollution, 231(2), e47. https://doi.org/10.1007/s11270-020-4426-0.

Babaei, A. A., Safdari, F., Alavi, N., Bakhshoodeh, R., Motamedi, H., & Paydary, P. (2020). Co-composting of oil-based drilling cuttings by bagasse. Bioproc. Biosystems Engineering, 1, 2020.43.

Bajaj, S., & Singh, D. K. (2015). Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: Mini review. International Biodeterioration and Biodegradation, 100, 98–105. https://doi.org/10.1016/j.ibiod.2015.02.023.

Banerjee, A., & Ghoshal, A. K. (2010). Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresource Technology, 101(14), 5501–5507. https://doi.org/10.1016/j.biortech.2010.02.018.

Barrutia, O., Garbisu, C., Hernández-Allica, J., Garcıa-Plazaola, J. I., & Becerril, J. M. (2010). Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environmental Pollution, 158(5), 1710–1715. https://doi.org/10.1016/j.envpol.2009.11.027.

Batlle-Aguilar, J., Brovelli, A., Porporato, A., & Barry, D. A. (2011). Modelling soil carbon and nitrogen cycles during land use change. A review (PDF). Agronomy for Sustainable Development, 31(2), 251–274. https://doi.org/10.1051/agro/2010007.

Begum, M., Sarmah, B., Kandali, G. G., Kalita, S., Ojha, I., Bhagawati, R., & Talukdar, L. (2021). Persistant Organic Pollutants in Soil and Its Phytoremediation. In Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen.

Bell, T. H., Joly, S., Pitre, F. E., & Yergeau, E. (2014). Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 32(5), 271–280. https://doi.org/10.1016/j.tibtech.2014.02.008.

Bhupinder, D. (2017). Bioremediation technologies for the removal of pollutants. Advances in Environmental Biotechnology, 69–91.

BioRangers. (2022). Reliable remediation approach. Retrieved from https://www.bri.co.jp/english/teq/index.html Retrieved August 29.

Bodor, A., Petrovszki, P., Erdeiné Kis, Á., Vincze, G. E., Laczi, K., Bounedjoum, N., Szilágyi, Á., Szalontai, B., Feigl, G., Kovács, K. L., Rákhely, G., & Perei, K. (2020). Intensification of ex situ bioremediation of soils polluted with used lubricant oils: A comparison of biostimulation and bioaugmentation with a special focus on the type and size of the inoculum. International Journal of Environmental Research and Public Health, 17(11), 4106. https://doi.org/10.3390/ijerph17114106.

Bolton, M. (2012). Comparing two remediation alternatives for diesel-contaminated soil in the Arctic using life cycle assessment. Queen’s University.

Borriss, R. (2020). Phytostimulation and biocontrol by the plant-associated Bacillus amyloliquefaciens FZB42:an update. In Phytol-microbiome in stress regulation, 1 (pp. 1–20). Springer. https://doi.org/10.1007/978-981-15-2576-6_1.

Campos, J. M., Stamford, T. L. M., & Sarubbo, L. A. (2019). Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation, 30(4), 313–324. https://doi.org/10.1007/s10532-019-09877-8.

Carŕe, F., Caudeville, J., Bonnard, R., Bert, V., Boucard, P., & Ramel, M. Soil contamination and human health: A major challenge for global soil security. In Global Soil Security, 2017; 275–295.

Cristaldi, A., Oliveri Conti, G., Cosentino, S. L., Mauromicale, G., Copat, C., Grasso, A., Zuccarello, P., Fiore, M., Restuccia, C., & Ferrante, M. (2020). Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environmental Research, 185, 109427. https://doi.org/10.1016/j.envres.2020.109427.

Cristorean, C., Micle, V., & Sur, I. M. (2016). A critical analysis of ex-situ bioremediation technologies of hydrocarbon polluted soils. ECOTERRA J. Environ. Res. Prot., 13, 17–29.

Cui, X., Mayer, P., & Gan, J. (2013). Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations. Environmental Pollution, 172, 223–234. https://doi.org/10.1016/j.envpol.2012.09.013.

Dixit, R., Wasiullah, D., Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., Singh, B., Rai, J., Sharma, P., Lade, H., & Paul, D. (2015). Bioremediation of Heavy metals from Soil and Aquatic Environment: An Overview of principles and Criteria of Fundamental Processes. Sustainability, 7(2), 2189–2212. https://doi.org/10.3390/su7022189.

Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). . Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003.

Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A., & Amoroso, M. J. (2010). Isolation of pesticide degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. International Biodeterioration and Biodegradation, 64(6), 434–441. https://doi.org/10.1016/j.ibiod.2010.05.001.

Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J. M., & Camino, G. (2011). Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polymer Degradation and Stability, 96(12), 2120–2129. https://doi.org/10.1016/j.polymdegradstab.2011.09.018.

Ganjar, S., & Sarwoko, M. (2012). Assessment of framework for remediation techmologies of oil polluted environment. International Journal of Academic Research, 4(2), 36–39.

Girma, G. (2015). Microbial bioremediation of some heavy metals in soils: An updated review. Indian Journal of Scientific Research, 6(1), 147–161.

Gohil, H., Ogram, A., & Thomas, J. (2014). Stimulation of anaerobic biodegradation of DDT and its metabolites in a muck soil: Laboratory microcosm and mesocosm studies. Biodegradation, 25(5), 633–642. https://doi.org/10.1007/s10532-014-9687-0.

Haritash, A. K., & Kaushik, C. P. (2016). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of hazardous materials, 169, 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137.

Hmidet, N., Jemil, N., & Nasri, M. (2019). Simultaneous production of alkaline amylase and biosurfactant by Bacillus methylotrophicus DCS1: Application as detergent additive. Biodegradation, 30(4), 247–258. https://doi.org/10.1007/s10532-018-9847-8.

Iñiguez-Franco, F., Auras, R., Burgess, G., Holmes, D., Fang, X. Y., Rubino, M., & Soto-Valdez, H. (2016). Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer, 99, 315–323. https://doi.org/10.1016/j.polymer.2016.07.018.

Invally, K., Sancheti, A., & Ju, L. K. (2019). A new approach for downstream purification of rhamnolipid biosurfactants. Food and Bioproducts Processing, 114, 122–131. https://doi.org/10.1016/j.fbp.2018.12.003.

Jiang, T., Gao, C., Ma, C., & Xu, P. (2014). Microbial lactate utilization: Enzymes, pathogenesis, and regulation. Trends in Microbiology, 22(10), 589–599. https://doi.org/10.1016/j.tim.2014.05.008.

Jiang, Y., Qi, H., & Zhang, X. M. (2018). Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances and Environmental Engineering, 53(5), 448–456. https://doi.org/10.1080/10934529.2017.1409579.

Jin, L., Son, Y., DeForest, J. L., Kang, Y. J., Kim, W., & Chung, H. (2014). Single-walled carbon nanotubes alter soil microbial community composition. Science of the Total Environment, 466–467, 533–538. https://doi.org/10.1016/j.scitotenv.2013.07.035.

Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology, 9(3), 215–288. https://doi.org/10.1007/s11157-010-9215-6.

Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123. https://doi.org/10.1002/smll.201201225.

Kulshreshtha, A., Agrawal, R., Barar, M., & Saxena, S. (2014). A review on bioremediation of heavy metals in contaminated water. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(7), 44–50. https://doi.org/10.9790/2402-08714450.

Li, D., & Alvarez, P. J. (2011). Avoidance, weight loss, and cocoon production assessment for Eisenia fetida exposed to C60 in soil. Environmental Toxicology and Chemistry, 30(11), 2542–2545. https://doi.org/10.1002/etc.644.

Li, J., & Li, X. (2020). Landfarming: An effective bioremediation technique for the treatment of organic pollutants in soil. Critical reviews in biotechnology, 40(6), 766-781. https://doi.org/10.1080/07388551.2020.1747253.

Limmer, M., & Burken, J. (2016). Phytovolatilization of organic contaminants. Environmental Science and Technology, 50(13), 6632–6643. https://doi.org/10.1021/acs.est.5b04113.

Liu, J., & Yang, Y. (2021). Biostimulation strategies for bioremediation of petroleum hydrocarbon-contaminated soil: A review. Journal of hazardous materials, 415, 125632. https://doi.org/10.1016/j.jhazmat.2021.125632.

Liu, J., Zhang, X., & Liang, R. (2020). Bio-immobilization technology for the remediation of organic pollutants in soil: A review. Science of the Total Environment, 720, 137520. https://doi.org/10.1016/j.scitotenv.2020.137520.

Lukic, B., Panico, A., Huguenot, D., Fabbricino, M., Hullebusch, V., & Esposito, G. (2017). A review on the efficiency of land farming integrated with composting as soil remediation treatment. Environmental Technology Reviewers, 6(1), 94–116.

Macaulay, B., & Rees, D. (2014). Bioremediation of oil spills: A review of challenges for research advancement. Ann. Environ. Sci., 8, 9–37.

Major, D. W., McMaster, M. L., Cox, E. E., Edwards, E. A., Dworatzek, S. M., Hendrickson, E. R., Starr, M. G., Payne, J. A., & Buonamici, L. W. (2002). Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environmental Science and Technology, 36(23), 5106–5116. https://doi.org/10.1021/es0255711.

Mangwani, N., Kumari, S., Das, S., & Naik, M. M. (2019). Cometabolic bioremediation of organic pollutants in soil: Progress and prospects. Journal of Environmental Management, 231, 1132-1144. https://doi.org/10.1016/j.jenvman.2018.11.042.

Mapelli, F., Scoma, A., Michoud, G., Aulenta, F., Boon, N., Borin, S., Kalogerakis, N., & Daffonchio, D. (2017). Biotechnologies for marine oil spill cleanup: Indissoluble ties with microorganisms. Trends in Biotechnology, 35(9), 860–870. https://doi.org/10.1016/j.tibtech.2017.04.003.

Mateju, K. Bioatabilization & bioimbobilization. (2010). Trends in Bioremediation and Phytoremediation. GrazynaPlaza, Ed., pp. 131-14 ISBN, 978-81-308-0424-8.

Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375. https://doi.org/10.1016/j.envint.2011.06.003.

Mihopoulos, P. G., Suidan, M. T., Sayles, G. D., & Kaskassian, S. (2002). Numerical modeling of oxygen exclusion experiments of anaerobic bioventing. Journal of Contaminant Hydrology, 58(3–4), 209–220. https://doi.org/10.1016/s0169-7722(02)00037-2.

Muehlberger, E. W., Harris, K., & Hicks, P. (1997). In situ Biosparging of a Large Scale Dissolved Petroleum hydrocarbon Plume at a Southwest Lumber mill, TAPPI. Proceedings of the—Environmental Conference and Exhibition, 1.

Mukherjee, S., & Kumar, R. (2019). Bioremediation of volatile organic compounds from soil and water. Microbial biotechnology, 12(6), 1196-1216. https://doi.org/10.1111/1751-7915.13465.

Mustapha, M. U., & Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: A review paper. Journal of Microbial and Biochemical Technology, 07(5), 253–256. https://doi.org/10.4172/1948-5948.1000219.

Oberoi, A. S., Philip, L., & Bhallamudi, S. M. (2015). Biodegradation of various aromatic compounds by enriched bacterial cultures: Part a – Monocyclic and polycyclic aromatic hydrocarbons. Applied Biochemistry and Biotechnology, 176(7), 1870–1888. https://doi.org/10.1007/s12010-015-1684-1.

Okere, U., & Semple, K. (2012). Biodegradation of PAHs in “pristine” soils from different climatic regions. Journal of Bioremediation and Biodegradation, 1(Suppl. 1), 1–11.

Othman, N., Irwan, M., & Hussain, N. (2011). Bioremediation a potential approach for soil contaminated with polycyclic 112 B. LUKIĆ ET AL. aromatic hydrocarbons: an overview. International Journal of Sustainable Construction Engineering and Technology, 2(2), 48–53.

RAAG. (2000). Evaluation of risk based corrective action model. Remediation Alternative Assessment Group, Memorial University of Newfoundland, NF. Canada.

Rajavel, K., Gomathi, R., Manian, S., & Rajendra Kumar, R. T. (2014). In vitro bacterial cytotoxicity of CNTs: Reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir, 30(2), 592–601. https://doi.org/10.1021/la403332b.

Ren, W., Ren, G., Teng, Y., Li, Z., & Li, L. (2015). Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. Journal of Hazardous Materials, 297, 286–294. https://doi.org/10.1016/j.jhazmat.2015.05.017.

Ritter, L., Solomon, K., Forget, J., Stemeroff, M., & O’Leary, C. (1995). A review of Persistent Organic Pollutants. Internat (pp. 1–149). Program on Chemical Safety.

Rocha e Silva, N. M. P., Meira, H. M., Almeida, F. C. G., Soares da Silva, R. D. C. F., Almeida, D. G., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2019). Natural surfactants and their applications for heavy oil removal in industry. Separation and Purification Reviews, 48(4), 267–281. https://doi.org/10.1080/15422119.2018.1474477.

Roy, A., Dutta, A., Pal, S., Gupta, A., Sarkar, J., Chatterjee, A., Saha, A., Sarkar, P., Sar, P., & Kazy, S. K. (2018). Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oilrefinery sludge. Bioresource Technology, 253, 22–32. https://doi.org/10.1016/j.biortech.2018.01.004.

Sabale, R., Tamhankar, V., Dongare, M., & Mohite, S. (2012). Extraction, determination and bioremediation of heavy metal ions and pesticide residues from lake water. J. Bioremedi. Biodegra, 3(4), 2155-6199.

Salehi, M. A., & Hakimghiasi, N. (2017). Hydrodynamics and mass transfer inthree-phase airlift reactors for activated carbon and sludge filtration. Advances in Environmental Technology, 2, 179–184.

Sayara, T. (2010). Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil: Process evaluation through composting and anaerobic digestion approach [Thesis]. University Autònoma de Barcelona.

Seh-Bardan, B. J., Othman, R., Wahid, S. A., Husin, A., & Sadegh-Zadeh, F. (2012). Bioleaching of heavy metals from mine tailings by Aspergillus fumigatus. Bioremediation Journal, 16(2), 57–65. https://doi.org/10.1080/10889868.2012.665958.

Semple, K. T., Reid, B. J., & Fermor, T. R. (2001). Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution, 112(2), 269–283. https://doi.org/10.1016/s0269-7491(00)00099-3.

Sidhu, G. P. S., Bali, A. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2018). Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere, 205, 234–243. https://doi.org/10.1016/j.chemosphere.2018.04.106.

Speight, J. G. (2018). Environmental organic chemistry for engineers, 1. Elsevier Ltd.-Heinemann. UK, ISBN 9780128006689.

United States Environmental Protection Agency (US EPA). (2012). Land farming | cleaning up UST system releases.

Uqab, B., Mudasir, S., & Nazir, R. (2016). Review on bioremediation of pesticides. J. Bioremed Biodeg., 7, 343.

Venkata, M., Veer, R., Kannaiah, G., Srikanth, S., Lalit, B., & Sarma, P. (2010). Microbial diversity analysis of long term operated biofilm configured anaerobic bioreactor producing hydrogen from wastewater treatment under diverse conditions. International Journal of Hydrogen Energy, 35, 12208–12215.

Venkateswar, R., Srikanth, S., Venkata, M., & Sarma, P. (2010). Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions, Bioelectro. Chem, 77, 125–132.

Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172. https://doi.org/10.1351/pac200173071163.

Wang, Q., Chang, C., Gao, Y., & Wang, Y. (2016). Bioremediation of polycyclic aromatic hydrocarbons-contaminated soil by microbial degradation. Frontiers in microbiology, 7, 2097. https://doi.org/10.3389/fmicb.2016.02097.

Wick, A. F., Haus, N. W., Sukkariyah, B. F., Haering, K. C., & Daniels, W. L. (2011). Remediation of PAH-contaminated soils and sediments: a literature review. CSES Department, internal research document, 102.

Wózniak-Karczewska, M., Lisiecki, P., Białas, W., Owsianiak, M., Piotrowska-Cyplik, A., Wolko, Ł., Ławniczak, Ł., Heipieper, H. J., Gutierrez, T., & Chrzanowski, Ł. (2019). E_ect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment, 671, 948–958. https://doi.org/10.1016/j.scitotenv.2019.03.431.

Wu, X., Gent, D. B., Davis, J. L., & Alshawabkeh, A. N. (2012). Lactate injection by electric currents for bioremediation of tetrachloroethylene in clay. Electrochimica Acta, 86, 157–163. https://doi.org/10.1016/j.electacta.2012.06.046.

Yang, Z., Li, B., Wang, S., Yang, Q., & Wang, Y. (2016). Investigation of degradation of phenanthrene by Bacillus cereus isolated from activated sludge and competitive inhibition kinetics. Fresen. Environmental Bulletin, 25, 5786–5794.

Yoon, S., Kim, J. H., Kim, J. H., Lee, J. H., & Kim, Y. H. (2020). Bioremediation of trichloroethylene-contaminated soil using mixed culture of microorganisms. Journal of hazardous materials, 394, 122556. https://doi.org/10.1016/j.jhazmat.2020.122556.

Zaneti, I. C. B. B., & Silva, G. O. (June 12–14, 2017). Sustentabilidade urbana e gestão de resíduos sólidos: O caso do Distrito Federal. In Proceedings of the Forum Internacional de Resíduos Sólidos-Anais, Curitiba, Brazil p. 10.

Zeneli, A., Kastanaki, E., Simantiraki, F., & Gidarakos, E. (2019). Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation. Journal of Environmental Chemical Engineering, 7(3), e103054. https://doi.org/10.1016/j.jece.2019.103054.

Zhang, Y., Zhu, Y. G., Houot, S., Qiao, M., Nunan, N., & Garnier, P. (2011). Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environmental Science and Pollution Research International, 18(9), 1574–1584. https://doi.org/10.1007/s11356-011-0521-5.
Published
2023-04-18
How to Cite
AKHTAR, Sana et al. Worldwide Efficiency of Bioremediation Techniques for Organic Pollutants in Soil: A Brief Review. Geosfera Indonesia, [S.l.], v. 8, n. 1, p. 102-116, apr. 2023. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/30875>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.19184/geosi.v8i1.30875.
Section
Review Articles