Surface Groundwater Pollution Dynamics Over 2015-2020 in the Salt Drying Pond of Pademawu Subdistrict, Madura, Indonesia

  • Wisnu Arya Gemilang Research Institute for Coastal Resources and Vulnerability, Ministry of Marine Affairs and Fisheries, Jl. Raya Padang-Painan, Padang, Sumatera Barat, 25245, Indonesia http://orcid.org/0000-0001-8565-0771
  • Ulung Jantama Wisha Research Institute for Coastal Resources and Vulnerability, Ministry of Marine Affairs and Fisheries, Jl. Raya Padang-Painan, Padang, Sumatera Barat, 25245, Indonesia http://orcid.org/0000-0001-6064-675X
  • Mas Agus Mardyanto Environmental Engineering Department, Sepuluh Nopember Institute of Technology, Kampus ITS Keputih, Sukolilo, Surabaya, Jawa Timur, 60111, Indonesia

Abstract

Pamekasan coastal area is the center of salt production concentrated in the Pademawu subdistrict with the ponds area of 740.96 ha. The sufficiently close distance of salt ponds to settlement areas allows several issues, such as shallow groundwater salinization. This study aimed to determine the salt pond’s degradation over five years (2015-2020) and its influence on the salinization issue in Pademawu. We compare groundwater quality parameters (conductivity, TDS, the depth of shallow surface groundwater, and salinity) surveyed in 2015 and 2020, correlated  to salt pond area alterations. Over five years of measurement, it was found that conductivity declined, reaching 2779.94 µS/cm. Based on TDS deterioration, groundwater transformed from brackish to freshwater in 2020. By contrast, the depth of shallow groundwater-surface increased by almost one meter. The freshwater area also increased by 22% over five years based on conductivity classification. Groundwater quality dynamics are related to the alteration of the salt pond area. On the other hand, the significant increase in rainfall intensity, which is not beneficial for salt agriculture, results in the salt pond area deterioration, thereby declining surface groundwater salinity in Pademawu due to the less interaction between Cl and groundwater within aquifers. Although the groundwater pollution  induced by seawater intrusion and salinization declined  in 2020, re-organizing the distance between salt ponds and the settlement area in Pademawu is crucial to minimize further groundwater pollution. 


 Keywords : Dynamics; pollution; groundwater; salt agriculture; Pademawu


 


Copyright (c) 2022 Geosfera Indonesia and Department of Geography Education, University of Jember


Creative Commons License
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License

References

Abu-alnaeem, M. F., Yusoff, I., Ng, T. F., Alias, Y., & Raksmey, M. (2018). Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Science of the Total Environment, 615, 972–989. https://doi.org/10.1016/j.scitotenv.2017.09.320.

Azlaoui, M., Zeddouri, A., Haied, N., Nezli, I. E., & Foufou, A. (2021). Assessment and Mapping of Groundwater Quality for Irrigation and Drinking in a Semi-Arid Area in Algeria. Journal of Ecological Engineering, 22(8), 19–32. https://doi.org/10.12911/22998993/140369.

BPS. (2018). Kecamatan Pademawu dalam Angka 2018. Pademawu : Badan Pusat Statistik.

BMKG (2015). Monthly average of rainfall intensity. Badan Meteorologi dan Geofisika.

BMKG (2020). Monthly average of rainfall intensity. Badan Meteorologi dan Geofisika.

Cahyadi, A., Adji, T. N., Marfai, M. A., Noviandaru, S., & Agniy, R. F. (2017). Analisis Dampak Intrusi Air Laut Terhadap Airtanah di Pulau Koral Pramuka, DKI Jakarta. Majalah Geografi Indonesia, 31(2), 61. https://doi.org/10.22146/mgi.23725.

Citrayati, N., Antariksa, & Titisari, E. Y. (2008). Permukiman Masyarakat Petani Garam Di Desa Pinggir Papas, Kabupaten Sumenep. Arsitektur E-Journal, 1(1), 1–14.

Duraisamy, S., Govindhaswamy, V., Duraisamy, K., Krishinaraj, S., Balasubramanian, A., & Thirumalaisamy, S. (2019). Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environmental Geochemistry and Health, 41(2), 851–873. https://doi.org/10.1007/s10653-018-0183-z.

Efendy, M., Sidik, R. F., & Muhsoni, F. F. (2014). Pemetaan potensi pengembangan lahan tambak garam di pesisir utara kabupaten pamekasan. Jurnal Kelautan, 7(1), 1–11.

Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. In Nature Climate Change, 7(5), 342–345. https://doi.org/10.1038/nclimate1413.

Gemilang, W. A., & Bakti, H. (2019). Kerentanan Air Tanah di Kawasan Pertanian Garam Pesisir Pademawu, Madura berdasarkan Karakteristik Hidrogeokimia dan Indeks Kualitas Air. RISET Geologi Dan Pertambangan, 29(1), 115-125 https://doi.org/10.14203/risetgeotam2019.v29.1005.

Gemilang, W. A., Kusumah, G., & Wisha, U. J. (2017). Penilaian Kerentanan Airtanah Menggunakan Metode Galdit ( Studi Kasus : Kawasan Pertanian Garam Pademawu , Madura-Indonesia ). Jurnal Kelautan Nasional, 12(3), 117-125.

Gemilang, W. A., Rahmawan, G. A., & Wisha, U. J. (2017). Kualitas Perairan Teluk Ambon Dalam Berdasarkan Parameter Fisika dan Kimia pada Musim Peralihan I. EnviroScienteae, 13(1). https://doi.org/10.20527/es.v13i1.3518.

Gemilang, W. A., Wisha, U. J., & Kusumah, G. (2019). Identifikasi Kontaminasi Air Tanah Oleh Polutan Cl - di Kawasan Pertanian Garam , Kecamatan Pademawu , Pamekasan , Madura Menggunakan Metode Geolistrik Tahanan Jenis. Jurnal Teknologi Lingkungan, 20(1), 9–18. https://doi.org/10.29122/jtl.v20i1.2944.

Gopinath, S., Srinivasamoorthy, K., Vasanthavigar, M., Saravanan, K., Prakash, R., Suma, C. S., & Senthilnathan, D. (2018). Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India. Carbonates and Evaporites, 33(1). https://doi.org/10.1007/s13146-016-0300-y.

Huizer, S., Radermacher, M., De Vries, S., Oude Essink, G. H. P., & Bierkens, M. F. P. (2018). Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment. Hydrology and Earth System Sciences, 22(2), 1065–1080. https://doi.org/10.5194/hess-22-1065-2018.

Ilayaraja, K., & Ambica, A. (2015). Spatial distribution of groundwater quality between injambakkam-thiruvanmyiur areas, south east coast of India. Nature Environment and Pollution Technology, 14(4), 771–776.

Todd D.K. (1981). Groundwater Hydrology, 2nd edition. xiii + 535 pp., numerous figs and tables. New York, Chichester, Brisbane, Toronto: John Wiley. ISBN 0 471 87616 X.. Geological Magazine. https://doi.org/10.1017/s0016756800032477.

Klassen, J., Allen, D. M., & Kirste, D. (2014). Chemical Indicators of Saltwater Intrusion for the Gulf Islands, British Columbia. June, 43. Department of Earth Sciences, Simon Rfaser University.

Kumar K., S., Logeshkumaran, A., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2015). Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Applied Water Science, 5(4), 335–343. https://doi.org/10.1007/s13201-014-0196-4.

Krishnamurthy, J., Mani, A., Jayaraman, V., & Manivel, M. (2000). Groundwater resources development in hard rock terrain - An approach using remote sensing and GIS techniques. ITC Journal, 2(3–4). https://doi.org/10.1016/S0303-2434(00)85015-1.

Kusumaningtyas, M. A., Bramawanto, R., Daulat, A., & S. Pranowo, W. (2014). Kualitas perairan Natuna pada musim transisi. DEPIK, 3(1). https://doi.org/10.13170/depik.3.1.1277.

Martin, J. B., Cable, J. E., Smith, C., Roy, M., & Cherrier, J. (2007). Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida. Water Resources Research, 43(5). https://doi.org/10.1029/2006WR005266.

Matahelumual, B. C. (2010). Kajian kondisi air tanah Jakarta tahun 2010. Jurnal Lingkungan Dan Bencana Geologi, 1(3), 131-149.

Michael, H. A., Post, V. E. A., Wilson, A. M., & Werner, A. D. (2017). Science, society, and the coastal groundwater squeeze. In Water Resources Research, 53(4),. https://doi.org/10.1002/2017WR020851.

Moayedi, A., Yargholi, B., Pazira, E., & Babazadeh, H. (2019). Investigated of Desalination of Saline Waters by Using Dunaliella Salina Algae and Its Effect on Water Ions. Civil Engineering Journal, 5(11), 2450–2460. https://doi.org/10.28991/cej-2019-03091423.

Muchamad, A. N., Alam, B. Y. C. S., & Yuningsih, E. T. (2017). Hidrogeokimia Airtanah Pada Daerah Pantai: Studi Kasus Dataran Rendah Katak, Desa Sumber Agung, Kabupaten Banyuwangi. Riset Geologi Dan Pertambangan, 27(1), 39–46. https://doi.org/http://dx.doi.org/10.14203/risetgeotam2017.v27.442.

Nagano, T., Yanase, N., Tsuduki, K., & Nagao, S. (2003). Particulate and dissolved elemental loads in the Kuji River related to discharge rate. In Environment International, 28(7), 649-658. https://doi.org/10.1016/S0160-4120(02)00105-8.

Nas, B., & Berktay, A. (2010). Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1–4), 215–227. https://doi.org/10.1007/s10661-008-0689-4.

Permenkes RI. (2010). Peraturan Menteri Kesehatan Republik Indonesia Nomor 492/Menkes/Per/IV/2010 Tentang Persyaratan Kualitas Air Minum. In Peraturan Mentri Kesehatan Republik Indonesia.

Pinder, G. F. (2011). Groundwater hydrology. In Groundwater Quantity and Quality Management. American Society of Civil Engineers. https://doi.org/10.1201/ebk1439815557-c9.

Poespowardoyo, S. R. (1986). Peta Hidrogeologi Indonesia Lembar VIII Surabaya (Jawa). Direktorat Geologi Tata Lingkungan.

Putranto, T. T. (2019). Studi Kerentanan Airtanah Terhadap Pencemaran dengan Menggunakan Metode Drastic pada Cekungan Airtanah (CAT) Karanganyar-Boyolali, Provinsi Jawa Tengah. Jurnal Ilmu Lingkungan, 17(1), 158-171. https://doi.org/10.14710/jil.17.1.159-171.

Razeghi, M. (2018). Fundamentals of solid state engineering. In Fundamentals of Solid State Engineering. Springer. https://doi.org/10.1007/978-3-319-75708-7.

Ruseffandi, M. A., & Gusman, M. (2020). Pemetaan Kualitas Airtanah Berdasarkan Parameter Total Dissolved Solid (TDS) dan Daya Hantar Listrik (DHL) dengan Metode Ordinary Kriging Di Kec. Padang Barat, Kota Padang, Provinsi Sumatera Barat. Jurnal Bina Tambang, 5(1), 153–162.

Selvam, S., Singaraja, C., Venkatramanan, S., & Chung, S. Y. (2018). Geochemical Appraisal of Groundwater Quality in Ottapidaram Taluk, Thoothukudi District, Tamil Nadu using Graphical and Numerical Method. Journal of the Geological Society of India, 92(3), 312-320. https://doi.org/10.1007/s12594-018-1013-8.

Situmorang, R. L., Agustianto, D. A., & Suparman, M. (1992). Peta Geologi Lembar Waru-Sumenep, Jawa. Pusat Penelitian dan Pengembangan Geologi.

Wisha, U. J., Ondara, K., & Kusumah, G. (2017). An Overview of Surface Water Quality Influenced by Suspended Solid Content in the Sayung Waters, Demak, Indonesia. Segara, 13(2), 107–117. https://doi.org/https://doi.org/10.15578/segara.v13i2.6446.

Yusuf, M. A., & Abiye, T. A. (2019). Risks of groundwater pollution in the coastal areas of Lagos, southwestern Nigeria. Groundwater for Sustainable Development, 9. https://doi.org/10.1016/j.gsd.2019.100222.
Published
2022-04-23
How to Cite
GEMILANG, Wisnu Arya; WISHA, Ulung Jantama; MARDYANTO, Mas Agus. Surface Groundwater Pollution Dynamics Over 2015-2020 in the Salt Drying Pond of Pademawu Subdistrict, Madura, Indonesia. Geosfera Indonesia, [S.l.], v. 7, n. 1, p. 1-17, apr. 2022. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/28898>. Date accessed: 02 oct. 2022. doi: https://doi.org/10.19184/geosi.v7i1.28898.
Section
Original Research Articles