Mapping of Soil Quality Index (SQI) for Paddy Fields Using Sentinel-2 Imagery, Laboratory Analysis, and Principal Component Analysis
Abstract
The use of intensive chemical inputs causes lower availability of nutrients, organic matter, cation exchange capacity, and soil degradation.Therefore, this study aims to assess the soil quality index (SQI) for paddy fields in Jember, East Java, Indonesia. Input data for this study consist of land cover (interpreted from the Sentinel-2 image), soil type, and slope maps. Furthermore, the procedure to calculate soil quality index (SQI) include (1) spatial analysis to create the land unit, (2) preparation of soil sampling, (3) soil chemical analysis, (4) principal component analysis (PCA), and (5) reclassifying soil quality index (SQI). The PCA results showed that three variables i.e., % sand, total- P, and % silt were strongly correlated to SQI, while three classes namely very low, low, and medium of SQI were sufficiently used to describe the spatial variability of the paddy field. Furthermore, approximately 41.14% of the paddy field area were classed as very low while 52.23%, and 6.63% were categorized as low and medium SQI respectively. Based on the results, about 93.37% of paddy fields in Jember Regency still require improvement in soil quality via the addition of ameliorants such as organic fertilizers to increase quality and productivity. This application needs to focus on areas with very low-low quality hence, the quality increased to the medium category.
Keywords : Mapping; Soil Quality Index (SQI); PCA; Paddy field
Copyright (c) 2021 Geosfera Indonesia and Department of Geography Education, University of Jember
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
References
Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of Northeast Thailand: A review. Agronomy, 10(8), 1–25. https://doi.org/10.3390/agronomy10081061.
Asvini, B., & Jithesh. (2018). Impact of Using Artificial Fertilizer in Soil. International Journal of Pure and Applied Mathematics, 119(17), 47–55.
Bahnemiri, A. K., Abkenar, K. T., Kooch, Y., & Salehi, A. (2019). Valuation of soil and litter quality indices using analysis hierarchical process (AHP) in Hyrcanian beech forest stands, Northern Iran (Case study: Korkoroud forests in Noshahr). Journal of Forest Science, 65(10), 397–407. https://doi.org/10.17221/54/2019-JFS.
Balai Penelitian Tanah (2015). Soil Type Map. Retrieved from https://balittanah.litbang.pertanian.go.id/ind/.
Banerjee, H., Ray, K., Dutta, S. K., Majumdar, K., Satyanarayana, T., & Timsina, J. (2018). Optimizing Potassium Application for Hybrid Rice (Oryza sativa L.) in Coastal Saline Soils of West Bengal, India. Agronomy, 8(12), 1–14. https://doi.org/10.3390/agronomy8120292.
BIG (1999). Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Retrieved from h http://tides.big.go.id/DEMNAS/.
Bofana, J. do R., & Costa, A. C. C. (2017). Comparison of spatial interpolators for variability analysis of soil chemical properties in Cuamba (Mozambique). African Journal of Agricultural Research, 12(25), 2153–2162. https://doi.org/10.5897/ajar2016.12415.
Eviati & Sulaeman. (2009). Petunjuk Teknis Analisis Kimia Tanah, Tanaman , Air dan Pupuk. Jakarta : Balai Penelitian Tanah.
Fetene, E. M., & Amera, M. Y. (2018). The effects of land-use types and soil depth on soil properties of Agedit watershed, Northwest Ethiopia. Ethiopian Journal of Science and Technology, 11(1), 39. https://doi.org/10.4314/ejst.v11i1.4.
Hanafiah, K. . (2018). Basic of Soil Science. Depok : Raja Grafindo Persada.
Hore, R., Chakraborty, S., Bari, M. F., Shuvon, A. M., & Ansary, M. A. (2020). Soil Zonation and The Shaking Table Test of The Embankment on Clayey Soil. Geosfera Indonesia, 5(2), 196–209. https://doi.org/10.19184/geosi.v5i2.17873.
Hung, D. T., Hughes, H. J., Keck, M., & Sauer, D. (2019). Rice-residue management practices of smallholder farms in Vietnam and their effects on nutrient fluxes in the soil-plant system. Sustainability (Switzerland), 11(1641), 1–15. https://doi.org/10.3390/su11061641.
Japan International Cooperation Agency (JICA) (2014). Soil Analysis Manual. Bandung : NTC International Co., Ltd.
Johannes, H. P., Priadi, C. R., & Herdiansyah, H. (2019). Organic rice farming: An alternative to sustainable agriculture. IOP Conference Series: Materials Science and Engineering, 546(2). https://doi.org/10.1088/1757-899X/546/2/022008.
Karamanoli, K., Papaioannou, A., & Sofogianni, S. (2017). Soil fertility and productivity estimation of Pinus pinaster Aiton reforestations in Central and Northeast Chalcidice in Northern Greece. Journal of Forest Science, 63(10), 470–475. https://doi.org/10.17221/68/2017-JFS.
Kidinda, L. K., Bandi, B. T. K.-, Mukalay, J. B., Kabemba, M. K., Ntata, C. N., Ntale, T. M., Tamina, D. T., & Kimuni, L. N. (2015). Impact of Chicken Manure Integration with Mineral Fertilizer on Soil Nutriments Balance and Maize (Zea mays) Yield: A Case Study on Degraded Soil of Lubumbashi (DR Congo). American Journal of Plant Nutrition and Fertilization Technology, 5(3), 71–78. https://doi.org/10.3923/ajpnft.2015.71.78.
Li, D., Nanseki, T., Chomei, Y., & Fukuhara, Y. (2018). Impact of soil chemical properties on rice yield in 116 paddy fields sampled from a large-scale farm in Kinki Region, Japan. IOP Conference Series: Earth and Environmental Science, 185(1). https://doi.org/10.1088/1755-1315/185/1/012026.
Lin, H. C., & Fukushima, Y. (2016). Rice cultivation methods and their sustainability aspects: Organic and conventional rice production in industrialized tropical monsoon Asia with a dual cropping system. Sustainability (Switzerland), 8(529), 1–23. https://doi.org/10.3390/su8060529.
Maas, E. D. V. L., Lal, R., Coleman, K., Montenegro, A., & Dick, W. A. (2017). Modeling soil organic carbon in corn (Zea mays L.)-based systems in Ohio under climate change. Journal of Soil and Water Conservation, 72(3), 191–204. https://doi.org/10.2489/jswc.72.3.191.
Mohawesh, Y., Taimeh, A., & Ziadat, F. (2015). Effects of land-use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean climate. Solid Earth, 6(3), 857–868. https://doi.org/10.5194/se-6-857-2015.
Mukherjee, A., & Lal, R. (2014). Comparison of soil quality index using three methods. PLoS ONE, 9(8), 1–16. https://doi.org/10.1371/journal.pone.0105981.
Nusantara, R. W., Aspan, A., Alhaddad, A. M., Suryadi, U. E., Makhrawie, Fitria, I., Fakhrudin, J., & Rezekikasari. (2018). Peat soil quality index and its determinants as influenced by land use changes in kubu Raya district, West Kalimantan, Indonesia. Biodiversitas, 19(2), 540–545. https://doi.org/10.13057/biodiv/d190229.
Panday, D., Ojha, R. B., Chalise, D., Das, S., Twanabasu, B., & Tejada Moral, M. (2019). Spatial variability of soil properties under different land use in the Dang district of Nepal. Cogent Food & Agriculture, 5(1), 1–19. https://doi.org/10.1080/23311932.2019.1600460.
Pierzynski, G. M., Sims, J. T., & Vance, G. F. (2005). Soil and Environmental Quality. Florida : CRC Press Taylor and Francis Group.
Reddy, R. S., Babu, G. A., & Reddy, A. R. M. (2020). Geospatial Approach for the Analysis of Forest Cover Change Detection using Machine Learning. Geosfera Indonesia, 5(3), 335–351. https://doi.org/10.19184/geosi.v5i3.20157.
Ren, X., Chen, F., Ma, T., & Hu, Y. (2020). Soil quality characteristics as affected by continuous rice cultivation and changes in cropping systems in South China. Agriculture (Switzerland), 10(10), 1–11. https://doi.org/10.3390/agriculture10100443.
Romadhona, S., & Arifandi, J. A. (2020). Indeks Kualitas Tanah Dan Pemanfaatan Lahan Sub Daerah Aliran Sungai Suco Kabupaten Jember. Geography: Jurnal Kajian, Penelitian Dan Pengembangan Pendidikan, 8(1), 37–45.
Roy, R., Chan, N. W., & Xenarios, S. (2015). Sustainability of rice production systems: an empirical evaluation to improve policy. Environment, Development, and Sustainability, 18(1), 257–278. https://doi.org/10.1007/s10668-015-9638-x.
Seifu, W., & Elias, E. (2018). Soil Quality Attributes and Their Role in Sustainable Agriculture: A Review. International Journal of Plant & Soil Science, 26(3), 1–26. https://doi.org/10.9734/ijpss/2018/41589.
Supriyadi, Mustikaningrum, I. A., Herawati, A., Purwanto, P., & Sumani, S. (2018). Soil quality assessment in organic and non-organic paddy fields in Susukan, Indonesia. Bulgarian Journal of Agricultural Science, 24(5), 777–784.
Supriyadi, S., Sih Dewi, W., Nugrahani, D., Rahmah, A. A., Haryuni, H., & Sumani, S. (2019). The Assessment of Soil Quality Index for Paddy Fields with Indicator Biology in Jatipurno Districts, Wonogiri. Modern Applied Science, 14(1), 20–33. https://doi.org/10.5539/mas.v14n1p20.
Terano, R., Mohamed, Z., Shamsudin, M. N., & Latif, I. A. (2015). Farmers sustainability index: The case of paddy farmers in state of Kelantan, Malaysia. Journal of the International Society for Southeast Asian Agricultural Sciences, 21(1), 55–67.
USDA - Soil Survey Staff. (2014). Keys to soil taxonomy. Washington DC : USDA.
USGS (2019). Sentinel-2 Imagery. Retrived from https://www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2.
Van Grinsven, H. J. M., Erisman, J. W., De Vries, W., & Westhoek, H. (2015). Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environmental Research Letters, 10(2). https://doi.org/10.1088/1748-9326/10/2/025002.
Xie, H., Huang, Y., Chen, Q., Zhang, Y., & Wu, Q. (2019). Prospects for agricultural sustainable intensification: A review of research. Land, 8(11), 1–27. https://doi.org/10.3390/land8110157.
Yao, H., Chen, X., Yang, J., Li, J., Hong, J., Hu, Y., & Mao, X. (2020). Effects and mechanisms of phosphate activation in paddy soil by phosphorus activators. Sustainability (Switzerland), 12(9), 1–15. https://doi.org/10.3390/su12093917.