Sediment Flow Characteristics in The Upper Slope of Volcanic Landscapes With Dryland Agriculture

  • La Ode Hadini Department of Geography, Halu Oleo University, Kendari, 93232, Indonesia
  • Junun Sartohadi Department of Soil Science, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia http://orcid.org/0000-0002-0059-8335
  • M. Anggri Setiawan Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Djati Mardiatno Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia http://orcid.org/0000-0001-7401-1886
  • Nugroho Christanto Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Abstract

Increasing population densities and food demands are major factors contributing to the widespread use of agricultural drylands in upper volcanic slope areas. This phenomenon poses a high risk of severe erosional events that are environmentally hazardous. Therefore, this study aims to analyze the sediment flow characteristics, based on the relationship between sediment flow and water level as well as the sediment discharge rate and soil loss. Field surveys were conducted to determine the soil measurement, slope morphology and dryland cover characteristics. The sediment flow was evaluated at the gully outlet, where 169 suspension data pairs for the modeling and 130 suspension data pairs for the validation, as well as the bed load, water level, rainfall and water flow characteristics were obtained. Tables and figures were subsequently used to represent the measurement data and analysis results for the correlation between the flow rate effects, sediment and soil loss on the water surface. The results showed that the sediment flow in volcanic landscape slopes with dryland agriculture were possibly characterized by the polynomial relationship, using the suspension discharge model, Qs=0.0322Q2+6.0625Q–1.2658. Under this condition, the average rate of soil loss in the form of sediment load and erosion rate of the catchment area occurred at 953.53 and ​​1,657.94 ton/ha/yr, respectively. Furthermore, the sediment sources in the soil loss were believed to originate from 83% of the suspended sediments and 17% bed loads.


Keywords: Discharge; Dryland; Landscape; Sediment; Volcano


Copyright (c) 2021 Geosfera Indonesia and Department of Geography Education, University of Jember


 


Creative Commons License
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License

References

Ahn, J., & Yang, C. (2015). Determination of recovery factor for simulation of non-equilibrium sedimentation in reservoir. International Journal of Sediment Research, 30(1), 68–73. https://doi.org/10.1016/S1001-6279(15)60007-5.

Alstrom, K. & Akerman, A. B. (2016).Contemporary Soil Erosion Rates on Arable Land in Southern Sweden. Geografiska Annaler: Series A, Physical Geography,74(2), 101–108. https://doi.org/10.1080/04353676.1992.11880354.

Ayuningtyas, D.W.(2012). Analisis Pengaruh Curah Hujan Terhadap Sedimentasi di Daerah Aliran Sungai (DAS) Citarum Hulu dengan Metode RUSLE. Doctoral Dissertation. Institut Teknologi Bandung.

Badan Geologi Indonesia. (2011). Data Dasar Gunung Api Indonesia, Edisi ke-2. Bandung : Kementrian Energi dan Sumber Daya Mineral.

Bachri, S., Utaya, S., Nurdiansyah, F.D., Nurjanah, A.E., Tyas, LWN.,Purnama, D.S., & Adillah, A.A. (2017). Analisis dan Optimalisasi Potensi Lahan Pertanian sebagai Kajian Dampak Positif Erupsi Gunungapi Kelud 2014. Majalah Geografi Indonesia, 31 (3), 33-43. https://doi.org/10.22146/mgi.27738.

Boyce, R. C. (1975). Sediment routing with sediment delivery ratios. In Present and prospective technology for predicting sediment yields and sources, pages 61–65. US Department of Agriculture, Publication ARS-S-40.

Departemen Kehutanan (1986). Pedoman Penyusunan Rencana Teknik Lapang Rehabilitasi Lahan dan Konservasi Tanah Daerah Aliran Sungai. Jakarta: Direktorat Jenderal Reboisasi dan Rehabilitasi Lahan.

Desifindiana, M.D., Suharto, B., & Wirosoedarmo, R. (2013). Analisa Tingkat Bahaya Erosi pada DAS Bondoyudo Lumajang dengan Menggunakan Metode Musle (In Press). Jurnal Keteknikan Pertanian Tropis dan Biosistem, 1(2), 9–17.

Gao, P., Deng, J.,Chai, X., Mu, X., Zhao, G., Shao, H., & Sun, W. (2017). Dynamic sediment discharge in the Hekou – Longmen region of Yellow River and soil and water conservation implications. Science of the Total Environment, 578, 56–66. http://dx.doi.org/10.1016/j.scitotenv.2016.06.128.

Gumiere, S.J., Bailly, J.S., Cheviron, B., Raclot, D., Bissonnais, Y.L., & Rousseau, A.N. (2015). Evaluating the Impact of the Spatial Distribution of Land Management Practices on Water Erosion: Case Study of a Mediterranean Catchment. J. Hydrol. Eng., 20(6), 1–10. https://doi.org/10.1061/%28ASCE%29HE.1943-5584.0001076.

Hadini, L.O., Sartohadi, J., Setiawan, M., & Mardiatno, D. (2019).Characteristics of sediment flow and soil loss of the volcanic landscape watershed with agroforestry landuse, Ecology, Environment and Conservation Paper, 25(3), 1062–1071.

Hadini, L.O., Sartohadi, J., Setiawan, M.A., & Mardiatno, D. (2021). The Dynamics of Flow
Discharge and Suspension Flow Discharge in Volcano Watershed with Agroforestry Land Cover. Civil and Environmental Science Journal (Civense), 4(2), 141-153. https://doi.org/10.21776/ub.civense.2021.00402.4.

Herschy, R.W. (2009). Streamflow Measurement Third edit. Abingdon : Routledge.

Kellner, E., & Hubbart, J. A. (2018).Spatiotemporal variability of suspended sediment particle size in a mixed-land-use watershed. Science of the Total Environment, 615, 1164–1175. https://doi.org/10.1016/j.scitotenv.2017.10.040.

Lazzari, M., Gioia, D., Piccarreta, M., Danese, M., & Lanorte, A. (2015). Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): A comparison between different empirical methods. Catena, 127, 323–339. http://dx.doi.org/10.1016/j.catena.2014.11.021.

Leopold, L.B. & Maddock, T. (1953). The Hydraulic Geomtry of Stream Channels and Some Physiographic Implications. Washington : US Government Printing Office.

Li, X., Wang, H., Zhang, L., & Wu, B. (2015).Soil Erosion and Sediment-Yield Prediction at Basin Scale in Upstream Watershed of Miyun Reservoir. J. Hydrol. Eng., 20(6), 1–7. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001098.

Maalim, F.K., Melesse., A.M, Belmont, P., Karen, & B. Gran. (2013). Modeling the impact of land use changes on runoff and sediment yield in the le sueur watershed, minnesota using GeoWEPP. Catena, 107, 35-45. https://doi.org/10.1016/j.catena.2013.03.004.

Ma’wa, J., Andawayanti, U., & Juwono, P.T. (2009). Studi Pendugaan Sisa Usia Guna Waduk Sengguruh Dengan Pendekatan Erosi dan Sedimentasi. Doctoral Dissertation. Univeristas Brawijaya.

Maltsev, K., & Yermolaev, O. (2020).Assessment of soil loss by water erosion in small river basins in Russia. Catena, 195. https://doi.org/10.1016/j.catena.2020.104726.

Mondal, A., Khare, D., Kundu, S., Meena, P. K., Mishra, P. K., & Shukla, R. (2015). Impact of Climate Change on Future Soil Erosion in Different Slope , Land Use , and Soil-Type Conditions in a Part of the Narmada River Basin , India. J. Hydrol. Eng., 20(6): C5014003, 20(2003), 1–12. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001065.

Morgan, R.P.C. (2005). Soil Erosion and Conservation: Third Edition. USA : Blackwell.

Nandini, R. & Narendra, B.H. (2012). Karakteristik Lahan Kritis Bekas Letusan Gunung Batur di Kabupaten Bangli, Bali. Jurnal Penelitian Hutan dan Konservasi Alam, 9(3), 199–211.

Neno, A. K., Harijanto, H., & Wahid, A. (2016). Hubungan Debit Air Dan Tinggi Muka Air di Sungai Lambagu Kecamatan Tawaeli Kota Palu. Warta Rimba, 4(2) 1–8.

Nocoń, W. (2016). Quantitative monitoring of batch sedimentation based on fractional density changes. Powder Technology, 292, 1–6. https://doi.org/10.1016/j.powtec.2016.01.010.

Panagos, P, Borrelli, P, Poesen, J, Ballabio, Lugato, E., Meusburger, K., Montanarella, L., & Allewl, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. http://doi.org/10.1016/j.envsci.2015.08.012.

Renard, K.G., Foster, G.R., Wesies, G.A., Mc Cool, D.K., & Yoder, D.C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Soil Loss Equation (RUSLE). Washington DC: US Department of Agriculture.

Rusdi, R., Alibasyah, M. R., & Abubakar, K. (2013). Evaluasi Degradasi Lahan Diakibatkan Erosi Pada Areal Pertanian di Kecamatan Lembah Seulawah Kabupaten Aceh Besar. Jurnal Konservasi Sumber Daya Lahan, 1(1), 24-39.

Sambodo, A. P., & Arpornthip, T. (2021). Increasing the Efficiency of Detailed Soil Resource Mapping on Transitional Volcanic Landforms Using a Geomorphometric Approach. Applied and Environmental Soil Science, 2021. https://doi.org/10.1155/2021/8867647.

Santoso, S. (2007). Mengolah Data Statistik Secara Profesional. Jakarta: Elex Media Komputindo.

Sartohadi, J. (2013). Genesis Tanah Super Tebal dan Kaitannya dengan Longsor Dalam di Hulu DAS Bogowonto Jawa Tengah. LPPM UGM : Yogyakarta.

Sartohadi, J., & Pratiwi, E.S. (2014). Bunga Rampai Penelitian: Pengelolan Bencana Kegunungapian Kelud pada Periode Krisis Erupsi 2014. Yogyakarta: Pustaka Pelajar.

Sharma, A., Tiwari, K.N. & Bhadoria, P.B.S. (2011). Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ Monit Assess, 173, 789–801. https://doi.org/10.1007/s10661-010-1423-6.

Soewarno. (1991). Hidrologi Pengukuran dan Pengukuran Daerah Aliran Sungai. Bandung: Nova.

Suripin, S. (2000). Evaluasi Penggunaan Teknik Debit-Lengkung Sedimen dalam Memprediksi Sedimen Layang. Jurnal dan Pengembangan Keairan, 1, 35-43.

Utomo, M. M. B., Suryatmojo, H.,& Soedjoko, S.A. (2014). Kajian Pengaruh Karakteristik Hujan Terhadap Volume Aliran dan Berat Suspensi di Kawasan Karst. Widyariset, 15(3),527–534.

Verma, A. K., & Jha, M. K. (2015). Evaluation of a GIS-Based Watershed Model for Streamflow and Sediment-Yield Simulation in the Upper Baitarani River Basin of Eastern India. J. Hydrol. Eng., 20(6). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001134.

Verstraeten, G., Prosser, I. P., & Fogarty, P. (2007). Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology, 334(3-4), 440–454. http://doi.org/10.1016/j.jhydrol.2006.10.025.

Widasmara, M.Y., & Hadi, M.P. (2016).Pemodelan debit aliran DAS Bompon menggunakan metode rasional modifikasi. Jurnal Bumi Indonesia, 5(3), 1–13.

Wulandari, D.A., Suripin, & Syafrudin.(2014). Evaluasi Penggunaan Lengkung Laju Debit-Sedimen (Sediment-Discharge Rating Curve) Untuk Memprediksi Sedimen Layang. Doctoral dissertation. Universitas Diponegoro.

Yan, Q., Lei, T., Yuan, C., Lei, Q., Yang, X., Zhang, M., Su, G., & An, L. (2015). Effects of watershed management practices on the relationships among rainfall, runoff, and sediment delivery in the hilly-gully region of the Loess Plateau in China. Geomorphology, 228, 735–745. https://doi.org/10.1016/j.geomorph.2014.10.015.

Zhou, H., Chang, W., & Zhang, L. (2016). Sediment sources in a small agricultural catchment: A composite finger printing approach based on the selection of potential sources. Geomorphology, 266, 11–19. https://doi.org/10.1016/j.geomorph.2016.05.007.
Published
2021-12-20
How to Cite
HADINI, La Ode et al. Sediment Flow Characteristics in The Upper Slope of Volcanic Landscapes With Dryland Agriculture. Geosfera Indonesia, [S.l.], v. 6, n. 3, p. 241-259, dec. 2021. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/24480>. Date accessed: 03 jan. 2025. doi: https://doi.org/10.19184/geosi.v6i3.24480.
Section
Original Research Articles