Modeling Land Use and Land Cover Dynamic Using Geographic Information System and Markov-CA

  • Millary Agung Widiawaty Department of Geography Education, Faculty of Social Sciences Education (FPIPS), Universitas Pendidikan Indonesia, Bandung City, West Java, 40154, Indonesia
  • Arif Ismail Department of Geography Education and Study Program on Survey, Mapping and Geographic Information, Faculty of Social Sciences Education (FPIPS), Universitas Pendidikan Indonesia, Bandung City, West Java, 40154, Indonesia
  • Moh. Dede Master Program on Environmental Science, Postgraduate School (SPs), Universitas Padjadjaran, Bandung City, West Java, 40132, Indonesia
  • N. Nurhanifah Department of Geography Education, Faculty of Social Sciences Education (FPIPS), Universitas Pendidikan Indonesia, Bandung City, West Java, 40154, Indonesia

Abstract

The need for built-up area increases along with a rise in population growth in many regions. This phenomenon leads to a tremendous change in agricultural land and decrease in the environmental carrying capacity. Therefore, this study aims to determine Land Use and Land Cover (LULC) dynamics and the drivers used for its modeling in 2030. This is a quantitative study, which uses the dynamic models of Geographic Information System (GIS) and Markov-CA. Data were obtained from the CNES-Airbus satellite imageries in 2009, 2014, and 2019 by using Google Earth at East Cirebon. The drivers include road density, distance to CBD, total population, distance to settlements, land slope and distance to rivers. The interaction between drivers and LULC change was analyzed using binary logistic regression. The results showed that the rise of built-up area reached 36.4 percent and causes the loss of 0.78 km2 of agricultural land from 2009 to 2019. The LULC simulation in 2030 shows an increase in the built-up area by 82.85 percent with probabilities above 0.6. Meanwhile the significant drivers for changes include road density and distance to settlements. In conclusion, efforts to reduce LULC change in agricultural land into built-up area is by re-strengthening spatial planning-based environmental awareness for the community.


Keywords: Built-up area; GIS; LULC; Markov-CA; Spatial modeling


 


Copyright (c) 2020 Geosfera Indonesia Journal and Department of Geography Education, University of Jember


Creative Commons License
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License

References

Aspinall, R. J. & Hill, M. C. (2008). Land Use Change, Science, Policy and Management. New York: Taylor & Francis.

Asselen, S. & Verburg, P. H. (2013). Land cover change or landuse intensification, simulating land system change with a global scale land change model. Global Change Biology, 19(12): 3648-3667.

BPS. (2013). Proyeksi Penduduk Indonesia 2010-2035. Jakarta: BPS.

Chavula, G., Brezonik, P. & Bauer, M. (2011). Land use and land cover change (LULC) in the Lake Malawi Drainage Basin 1982-2005. International Journal of Geosciences, 2 (2): 172-178.

Dan-Jumbo, N. G., Metzger, M. J. & Clark, A. P. (2018). Urban land-use dynamics in the Niger delta: the case of Greater Port Harcourt watershed. Urban Science, 2(4): 1-24.

de Smith, M. J. (2007). Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Leicester: Troubador Publishing.

Dede, M., Sahidin, R. B. S., Yutika, M. & Ramadhan (2016). Analisis potensi perekonomian sektor pertanian, kehutanan, dan perikanan serta pertambangan dan penggalian di Pantura Jawa Barat. Prosiding Seminar Nasional Epicentrum Geografi, 5.5: 100-108.

Dede, M., Widiawaty, M. A., Pramulatsih, G. P., Ismali, A., Ati, A. & Murtianto, H. (2019). Integration of participatory mapping, crowdsourcing and geographic information system in flood disaster management (case study Ciledug Lor, Cirebon). Journal of Information Technology and Its Utilization, 2(2): 44-47.

Deng, J. S., Wang, K., Hong, Y. and Jia, G. Q. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 92(3): 187-198.

Dibaba, W. T., Demissie, T. A., & Miegel, K. (2020). Drivers and implications of land use/land cover dynamics in finchaa catchment, northwestern ethiopia. Land, 9(4) doi:10.3390/land9040113.

Foresman, T., & Luscombe, R. (2017). The second law of geography for a spatially enabled economy. International Journal of Digital Earth, 10(10), 979-995. doi:10.1080/17538947.2016.1275830.

Gambo, J., Shafri, H. Z. M., Shaharum, N. S., Abidin, F. A. & Rahman, M. T. (2018). Monitoring and predicting land use-land cover (LULC) changes within around Krau Wildlife Reserve (KWR) protected area in Malaysia using multi-temporal Landsat data. Geoplanning: Journal of Geomatics and Planning, 5(1): 17-34.

Gashaw, T. (2017). Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environmental Systems Research, 6(17): 1-15.

Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-markov model under two different scenarios. Sustainability (Switzerland), 10(10) doi:10.3390/su10103421.

Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in beijing, china. Sustainability (Switzerland), 7(4), 4260-4279. doi:10.3390/su7044260.

Hassen, E. A. & Assen, M. (2017). Land use/cover dynamics and its drivers in Gelda catchment, Lake Tana watershed, Ethiopia. Environ. Syst. Res., 6 (4): 1-13.

Hidajat, M., Sitorus, S. R. P. & Rustiadi, E. (2013). Urban sprawl effect on settlement areas in urban fringe of metropolitan area. Journal of Environment and Earth Science, 12(3): 172-179.

Hosmer, D. (2013). Applied Logistic Regression. New Jersey: John Wiley & Sons.

Hua, A. K. (2017). Application of ca-markov model and land use/land cover changes in Malacca river watershed, Malaysia. Applied Ecology and Environmental Research 15(4): 605-622.

Istiono. (2014). Perubahan Perilaku Pengguna Jalan yang Berkeselamatan (Safer Road Users) Guna Menekan Tingkat Kecelakaan. Jakarta: The Indonesian Center for Police and Security Studies.

Kamwi, J. M., Cho, M. A., Kaetsch, C., Manda, S. O., Graz, F. P. & Chirwa, P. W. (2018). Assessing the spatial drivers of land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Land, 7(131): 1-13.

Kangalawe, R. Y. M & Lyimo, J. G. (2010). Population dynamics, rural livelihoods and environmental degradation: some experiences from Tanzania. Environment, Development and Sustainability, 12(6): 985-997.

Kumar, K. S., Valasala, N. V. A., Subrahmanyam, J. V. V., Mallampati, M., Shaik, K. & Ekkirala, P. (2015). Prediction of future land use land cover changes of Vijayawada City using remote sensing and GIS. International Journal of Innovative Research in Advanced Engineering, 3(2): 91-97.

Kusratmoko, E. (2017). Modelling land use/cover changes with Markov-cellular automata in Komering watershed, South Sumatera. IOP Conf. Series: Earth and Environmental Science, 54(17): 5-8.

Lahti, J. (2008). Modelling Urban Growth Using Cellular Automata: A Case Study of Sydney, Australia. Master Thesis. International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.

Li, S., Yang, H., Lacayo, M., Liu, J., & Lei, G. (2018). Impacts of land-use and land-cover changes on water yield: A case study in jing-jin-ji, china. Sustainability (Switzerland), 10(4) doi:10.3390/su10040960.

Liu, Y. (2012). Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy constrained cellular automata approach. International Journal of Geographical Information Science, 26(1): 151-167.

McAndrews, C., Pollack, K. M., Berrigan, D., Dannenberg, A. L. & Christopher, J. (2017). Understanding and improving arterial roads to support public health and transportation goals. American Journal of Public Health, 107(8): 1278-1282.

Mhawish, Y. M. & Saba, M. (2016). Impact of population growth on land use changes in Wadi Ziqlab of Jordan between 1952 and 2008. International Journal of Applied Sociology, 6(1): 7-14.

Mienmany, B. (2018). Analysis of Land Use and Land Cover Changes and the Driving Forces:a Case Study in Kaysone Phomvihan District, Laos. Master Thesis. Faculty of Arts, Universidade do Porto, Portugal.

Minderhoud, P. S. J., Coumou, L., Erban, L. E., Middelkoop, H., Stouthamer, E. and Addink, E. A. (2018). The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ., 634: 715–726.

Moreno, N. L. (2008). A Vector-Based Geographical Cellular Automata Model to Mitigate Scale Sensitivity and to Allow Objects Geometric Transformation. PhD Thesis. University of Calgary.

Munthali, M. G., Davis, N., Adeola, A. M., Botai, J. O., Kamwi, J. M., Chisale, H. L. W., & Orimoogunje, O. O. I. (2019). Local perception of drivers of land-use and land- cover change dynamics across dedza district, central malawi region. Sustainability (Switzerland), 11(3) doi:10.3390/su11030832.

Ouedraogo, I., Tigabu, M., Savadogo, P., Compaoré, H., Oden, P. C. & Ouadba, J.M. (2010). Land cover change and its relation with population dynamics in Burkina Faso, West Africa. Land Degradation & Environment, 21(5): 453-462.

Quan, B., Chen, J. F., Qiu, H. L., Romkens, M. J. M., Yang, X. Q., Jiang, S. F. & Li, B. C. (2006). Spatial-temporal pattern and driving forces of land use changes in Xiamen. Pedosphere, 16(4): 477-488.

Sanders, L. (2007). Model in Spatial Analysis. London: ISTE, Ltd.

Saputra, M. H., & Lee, H. S. (2019). Prediction of land use and land cover changes for north sumatra, indonesia, using an artificial-neural-network-based cellular automaton. Sustainability (Switzerland), 11(11) doi:10.3390/su11113024.

Sodikin, Sitorus S. R. P., Prasetyo L. B. & Kusmana C. (2017). Spatial analysis of mangrove deforestation and mangrove rehabilitation directive in Indramayu Regency, West Java, Indonesia. AACL Bioflux, 10(6):1654-1662.

Sui, D. Z. (2004). Tobler’s first law of geography: a big idea for small world?. Annals of the Association of American Geographers, 94(2): 269-277.

Ustuner, M., Sanli, F. B. & Dixon, B. (2017). Application of support vector machines for landuse classification using high-resolution RapidEye images: a sensitivity analysis. European Journal of Remote Sensing, 48(1): 403-422.

Voight, C., Hernandez-Aguilar, K., Garcia, C., & Gutierrez, S. (2019). Predictive modeling of future forest cover change patterns in southern belize. Remote Sensing, 11(7) doi:10.3390/rs11070823.

Widiawaty, M. A., Dede, M. & Ismail, A. (2018). Analisis tipologi urban sprawl di Kota Bandung menggunakan sistem informasi geografis. Seminar Nasional Geomatika, 3:547-554.

Yesuph, A.Y. & Dagnew, A.B. (2019). Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environ. Syst. Res., 8(21): 1-30.

Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land Use/Land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of china, the su-xi-chang region. Sustainability (Switzerland), 9(7) doi:10.3390/su9071204.
Published
2020-07-12
How to Cite
WIDIAWATY, Millary Agung et al. Modeling Land Use and Land Cover Dynamic Using Geographic Information System and Markov-CA. Geosfera Indonesia, [S.l.], v. 5, n. 2, p. 210-225, july 2020. ISSN 2614-8528. Available at: <https://jurnal.unej.ac.id/index.php/GEOSI/article/view/17596>. Date accessed: 13 nov. 2024. doi: https://doi.org/10.19184/geosi.v5i2.17596.
Section
Original Research Articles