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1. Introduction 

Rainfall is one of the most crucial meteorological factors that affects our life in a significant 

way (Barrera-Animas et al., 2022; Shmuel et al., 2022). Evaluation of changes in the rainfall within the 

context of climate change have a substantial impact on a region's socioeconomic situation (Gobiet et 

al., 2014; Mukherjee et al., 2018). In a country like India, simulation of rainfall is required for the 

improvement of the agricultural planning and management (Bhatt & Mall, 2015). Variations in rainfall 

have substantial impact on the nation's agricultural, drinking water supply, energy industry, and 

population's way of life (Cosgrove & Loucks, 2015; Mora et al., 2018). Rainfall at the monsoon season 

is essential for both agriculture during the dry months and irrigation during the wet months (Biemans 

et al., 2019; Ferrant et al., 2017). The "Indian summer monsoon," which is an essential part of the Asian 

monsoon system, is renowned for having "a wide range of variability on daily and decadal, time 
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ABSTRACT 

 

Although the variability and prediction of rainfall is an essential issue of the Santhal 

Pargana Division of the Jharkhand State but the issue is still far from its’ conclusive 

statement till date. Therefore, this study aimed to simulate the monthly rainfall 

from 1901 to 2020 using an eight-step procedure. After downloading the monthly 

rainfall for the Santhal Pargana Division from 1901 to 2020, the TBATS and Naive 

models were used to simulate the rainfall. The accuracy assessment of each model 

was done by using the MASE, MAE, RMSE, ME, and R. For the Naïve model, the 

Godda station was noticed with a comparatively high combined error. The lowest 

combined error was found for the Pakur station in case of Naïve models. Similar 

result was also obtained for the TBATS model. The TBATS was found with 

comparatively higher accuracy, as the combined error was less for the TBATS. The 

spatial assessment for the standardized rainfall varied from 84.419 mm. to 149.225 

mm. For the Naïve predicted model, the rainfall was marked in between 8.133 mm. 

to 67.059 mm. For the TBATS fitted model, the rainfall fluctuated from the 37.127 

mm. to 62.993 mm. Dumka station was noticed with comparatively low rainfall 

(i.e.,37.127 mm.). Deoghar and Jamtara stations were marked with a moderate 

rainfall. Remaining stations were marked with higher amount of rainfall for the 

TBATS fitted model. The Wilcoxon test proved that each model was significant at 

95% confidence interval. The result produced in this research is fruitful enough to 

be utilized for agricultural planning in the Santhal Pargana Division of the 

Jharkhand state, India.  
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periods." (Menon et al., 2013; Singh et al., 2019). The monsoonal system is an essential part of the 

hydro-geological cycle of the planet and plays a crucial role in the functioning of the global circulation 

and ecological systems. It may be one of the primary and essential factors affecting South and East 

Asia's climate (Liu & Liu, 2019; Liu et al., 2019). According to Azad et al. (2022); Dubache et al. 

(2019); Mie Sein et al. (2015) crop productivity, hydropower output, foliage, water management, and 

biodiversity of these sections are impacted by the intensity and length of the monsoonal rains. 

Additionally, "India's inter-annual variability of the monsoonal rainfall causes widespread droughts and 

floods, having a significant impact on the nation's food grain and economy" (Mohapatra et al., 2017). 

Therefore, for the integrated management of agriculture in India, analysis of rainfall is urgently needed. 

Now a day, hydrologists and meteorologists are more concerned with the forecasting and simulation of 

rainfall. Forecasting rainfall in the context of time series modelling is challenging since the amount of 

rainfall fluctuation has a substantial influence on the nation's economy (Rahman & Lateh, 2017; Saha 

et al., 2020).  

There are various simulation models are already developed in the field of civil engineering. The 

ARIMA model, is indeed the most commonly used model (Raha & Gayen, 2020). Due to its’ univariate 

design and linearity assumption, the model is unable to consider the geographical interrelationships 

exists in the time series model. As a result, the ARIMA model is inappropriate when there are spatial 

connections between distinct time delays and the time measurement data isn't entirely linear (Saha et 

al., 2020). Different statistical models, including the bilinear model (Granger & Andersen, 1978), 

ARCH (Autoregressive Conditional Heteroskedasticity) model (Engle, 1982), GARCH model 

(Bollerslev, 1986), and the TAR model were developed to deal with nonlinear patterns (Tong & Lim, 

1980). However, when working with data from the actual world, it is not always possible to identify 

certain specific assumptions that these models consider. In a real-world situation, inexpensive and 

effective reproducible models are required. As a result, some modified version of ARIMA model has 

been developed, which includes the Naïve models and Trigonometric Exponential Smoothing State 

Space model with Box-Cox transformation, ARMA errors, trend and seasonal component (TBATS) 

model (De Livera et al., 2011; Livera, 2010). The ARIMA (Autoregressive Integrated Moving 

Average), ARCH, GARCH and TAR models face the problems of overfitting. But the TBATS and 

Naïve models have an inbuilt capacity to avoid it. Additionally, the ARIMA, ARCH, GARCH and TAR 

models are suitable for only one seasonal cycle. But the TBATS and Naïve models are applicable for 

the complex seasonal pattern, which includes more than two seasonal cycles.  
Some machine learning and data driven models are also popped up to deal with complex 

seasonality and non-linearity of the time series data. Some of the popular techniques in the Machine 

Learning Family are ANN, SVM and ANFIS techniques. With a mean R2 value of 0.95, the SVM model 

outperforms the others when Samantaray et al., (2020) used ANN, SVM, and ANFIS to simulate rainfall 

in Bolangir District, Odisha.  Liu et al., (2019) found the ANN with higher accuracy in case of rainfall 

forecasting than the Numerical Weather Prediction Models (NWPM). In addition to these, many 

academicians and researchers throughout the world apply machine learning and deep learning models 

to forecast the precipitation. For example, Chaturvedi (2015) used multilayer back propagation neural 

network model to simulate the rainfall data of Chennai, India. Here, the dataset of 1978 to 2009 was 

used as the training set. Using some model evaluation parameters the model was found with sufficient 

accuracy. Azad et al. (2015) simulated the rainfall data of India by using ANN, PSD and MRA 

decomposition technique. Here, the ANN was found with comparatively higher accuracy.   

A comparison was done between the Support Vector Machine (SVM), Adaptive Neural Fuzzy 

Inference System (ANFIS) and Artificial Neural Network (ANN) to simulate the rainfall data of 

Yaoziang Province, China by Zhang et al. (2016). Here, the ANN was found with comparatively higher 

accuracy. Similarly, Bagirov et al. (2017); Balan et al. (2019); Chao et al. (2018); Mohd et al. (2020); 

Nourani et al. (2019); Scheuerer (2014); Vuyyuru et al. (2021); Wang et al. (2022); Xiang et al. (2018) 

used ANN, ANFIS, SVM to simulate the rainfall in different locations and in most of the cases, the 

ANN was found with comparatively low RMSE, MSE, MAPE value. However, a number of researchers 
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across the world have challenged the "Black-box character" of deep learning-based time series 

forecasting models. For instance, Dang (2020) created an original IDS architecture after seeing the 

Black-box characteristics of machine learning models. Similarly, Adadi & Berrada, (2018); Casado-

Vara et al., (2021); Doorn, (2021); Mehdiyev & Fettke, (2021); Xu et al., (2022) argue that the nature 

machine learning models are really unpredictable and therefore, are difficult to interpret. Instead of 

machine learning, the statistical data driven models such as TBATS and Naïve have enormous 

flexibility. Although, there are enormous flexibility in the two above mentioned models, the researchers 

have not widely used them to simulate the long-term time series of hydro-meteorological variables. 

Therefore, simulation of rainfall using TBATS (Trigonometric Exponential Smoothing State Space 

model with Box-Cox transformation, ARMA errors, trend and seasonal component) and Naïve 

models are noble attempts. 

 The Asian monsoon is the dominant factor which controls the life and livelihoods of the Santhal 

Pargana Division. These section experiences hard terrain, moderate slope and moderate rainfall. 

Geologically, these portions are dominated by the Granite and Gneiss, which is unable to store water. 

But still, agriculture is the principle livelihood in these portions. Therefore, here, agricultural activity 

entirely depends on the average rainfall. Hence, for the stability of the livelihood, the predictive spatio-

temporal simulation of rainfall is urgently needed. The upcoming pattern of rainfall in coming days are 

portrayed by the simulation, which helps to remove the uncertainty of the rainfall pattern. But till date, 

no prominent research works are found on the predictive pattern of rainfall in these sections. Therefore, 

the focus of the research are  (1) to simulate the rainfall of Santhal Pargana Division using two statistical 

data driven models, and (2) to evaluate each model geo-spatially in order to comprehend the 

geographical distribution of the rainfall. 

 

2. Study Area 

One of the key divisions of the Jharkhand state is Santhal Pargana Division. It is comprised 

with six districts such as, Godda, Deoghar, Dumka, Jamtara, Pakur and Sahibganj (Figure 1). Godda is 

famous for the Rajmahal coalfield in Lalmatia. Agriculture is the chief source of income, and the three 

main crops are the paddy, wheat, and maize. Godda was listed by the Indian government as one of the 

250 most underdeveloped districts in the nation on 2006 (out of a total of 640). According to the Census 

of India (2011), the Godda was found with 1,311,382 population. Almost, 12392.03 Acre irrigated area 

is present in the Godda district and approximately 82.16% of the district's population can read and write 

(literate) (Sharma & Singh, 2021). The Deoghar is situated in the western portion of the Santhal 

Parganas with a population of 1,491,879 people in accordance with the Census of India (Government 

of India, 2011). The area is made up of a number of groups of rocky hills covered in forest and connected 

by a network of long ridges and depressions. Highland crops are grown on the gently rolling highlands. 

The district is 247 metres above mean sea level on average. Hill ranges including Phuljari (750 m), 

Teror (670 m), and the Degaria are present (575 m) here. The district's overall slope declines towards 

the southeast. The Chhota-Nagpur granite gneiss of the Archean age dominates the district's geology, 

with areas of alluvium, sandstone, and shale from the Gondwana formations. 

 The Ajay and the Paltro are two significant rivers that pass through the area. These rivers create 

a network of numerous tributaries that make up the dissected plateau with a Dome-filled landscape. 

Dumka is famous for several pilgrimages and it had a total population of 1,321,442, according to the 

Census of India (2011) (Government of India, 2011). Dumka had an educational attainment of 62.54% 

and a ratio of men to women equals to 974 females with every 1000 males (Government of India, 2011).  

Granite, Gneiss, Gondwana and Rajmahal traps are the major constituents in the formation of geology 

of the Dumka District. An undulating highland region may be found in Santhal Parganas' southeast in 
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the Jamtara district. The Barakar, which comes from the Deoghar province in the western countryside, 

drains the region, briefly serves as a boundary between Jharkhand and West Bengal, and then departs 

into W.B. to the east, separates it from the Chotta Nagpur plateau and the Ajay. With approximately 

total population of 7,91,042 people, Jamtara has an area of 1811 sq km. In The sections of the lower 

heights of the Chottanagpur plateau; this district is located. More than 64% workers are engaged in the 

primary sector. The district's gender ratio was 954 people for every 1,000 men (Government of India, 

2011). The district's overall literacy rate was 64.59%, and there were 437 people per square kilometre, 

according to the most recent Census. When Pakur first appeared, it was a collection of ponds and 

orchards surrounded by dense forest and stony terrain beneath the Rajmahal Hills. According to the 

latest Census, the Pakur had a total population of 900422 persons. About 63% people are engaged into 

the primary sector. The average population density of the district was 498. The literacy rate of the 

district was 48.82%. Total irrigated area of the district was 6,81,90 Square km. The rice, rapeseed, 

wheat and maize are the major crops in these sections of the study area. Sahibganj district is divided 

into two subdivisions: the first is Sahibganj subdivision and the another is Rajmahal subdivision. 

Sahibganj district has 1,150,567 people living there as of the 2011 census. The most dominant rock in 

the area was the Rajmahal Trap. Alluvium and Laterite are the district's other geological formations. 

The district's northern and eastern boundaries contain alluvium, which is primarily made of clay and 

sand.  

Overall, the Santhal Pargana Division of the Jharkhand state has a tropical wet and dry climate. 

Mainly, summer, rainy, autumn, winter and spring seasons are noticed in these sections of the study 

area. The summer continues from the April to June. Average diurnal high temperature of these section 

is 37ºC and average daily low temperature is 25ºC. The southwest monsoon, which occurs in the state 

from June to October, is responsible for the annual rainfall, ranges of around 1,000 mm to 1500mm (40 

in) in the western sections. The months of July and August see over half of the yearly precipitation. 

November through February are considered the winter months. Therefore, from the above analysis the 

following details are prominent about the Santhal Pargana Division: 

1. These sections receive moderate rainfall annually. 

2. Agriculture is the principle livelihood in this study area. 

3. These sections are dominated by the Granite and Gneiss; therefore, these portions are unable 

to store the ground-water. 

4. Seasonal variation of rainfall is prominent in these portions. 

As the agriculture, is totally dependent on the predictive pattern of rainfall therefore, an honest 

effort is needed to understand the micro level pattern of rainfall in these sections. But till date, such 

research work is missing. Therefore, the focus of this research is to simulate the rainfall using the 

TBATS and Naïve models. 
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Figure 1. Study area 

 

3. Methods 

The methodological framework was portrayed in the Figure 2. This research used a 8-step methodology, 

which was displayed as follows: 

3.1 First Step-Collection of the Rainfall Data 

The rainfall data was collected from the India WRIS portal at the first step (India-WRIS, 2021). 

The most crucial elements of managing water resources are represented by water information in the 

public domain, an initiative of India's WRIS Project with the goal of disseminating data in the public 

domain. Planning and the strategy for managing water resources both require knowledge on the state of 

the water resources. Given the difficulties facing the water resources sector, the Government of India 

decided to create a centralised platform that would serve as a national repository for water resources 

and related data, with administrative granularity extending to smaller state-level units of government as 

well as hydrological levels like basins and sub-basins (Das, 2019; Shah et al., 2021). This entails 

gathering data from all different sources, standardizing it, and storing the complete gamete of data on a 

national scale. Consequently, delivering an operational system with greater visibility and a global 

standard platform on the public domain for all types of users (Prakash & Mishra, 2022). This portal has 

a feature called Water Data Online that enables users to view rainfall distribution for various states and 

basins throughout India using a variety of frequency, and aggregation types. To see trends of rainfall 
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data (average, total, min, max aggregation type) for a specific region of focus, the user can choose a 

time range (start and stop). Daily, monthly, or annual time steps are all acceptable. The portal displays 

the total and mean normal rainfall, which are based on the daily data from the Indian Meteorological 

Department (IMD) during 1901 to 2020. This study uses monthly rainfall information from 1901 to 

2020. 

3.2 Second Step-Checking of Partial Auto Correlation Function (PACF) 

The Partial Autocorrelation was checked for the downloaded rainfall dataset at the second stage. 

If the decreasing autocorrelation value with increasing time steps were found, then the calculation 

moved into the next step, otherwise it was stopped. The formula of PACF was as follows (Silva, 2021): 

𝑃𝐴𝐶𝐹 =
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒([𝑀𝑖|𝑀(𝑖−1), 𝑀(𝑖−2) … … … 𝑀(𝑖−𝑘+1)],[𝑀(𝑖−𝑘)|𝑀(𝑖−1), 𝑀(𝑖−2) … … … 𝑀(𝑖−𝑘+1)])

𝜎
[𝑀𝑖|𝑀(𝑖−1), 𝑀(𝑖−2) … … … 𝑀(𝑖−𝑘+1)]

×𝜎
[𝑀(𝑖−𝑘)|𝑀(𝑖−1), 𝑀(𝑖−2) … … … 𝑀(𝑖−𝑘+1)]

 (1) 

Where, M is the downloaded rainfall series; k is the time series lag. 

3.3 Third Step-Standardize the Rainfall Dataset 

In the third step, it was essential to standardize the rainfall dataset. Standardization is required 

to minimize the randomness of the rainfall dataset (Yaseen et al., 2021): 

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑛𝑜𝑟𝑚(𝑌𝑖) =
𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑖𝑛

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑎𝑥−𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑖𝑛
       (2) 

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  represents the observed rainfall data (downloaded monthly data from India 

WRIS),  𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑖𝑛   is the minimum rainfall, 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑚𝑎𝑥  is the maximum rainfall, 

and  𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑛𝑜𝑟𝑚is the value corresponding normalized numeric of rainfall. 

3.4 Fourth Step-Checking of Outliers 

The fourth stage was marked by the two-sided Grubb's test (Grubbs, 1969; Stefansky, 2012) to 

identify outliers in the univariate rainfall data set, which has a roughly normal distribution (Urbanczyk-

Wochniak et al., 2003): 

𝐺 =
𝑚𝑎𝑥|𝑌𝑖−𝑌̅|

𝑠𝑦
            (3) 

Where, G is the Grubb’s test; Y is the observed rainfall dataset and 𝑌̅ is the mean of the 

standardized rainfall dataset. The data set for rainfall has a standard deviation of 𝑠𝑦. If outlier value is 

more than 1 and beyond the 0 to 1 range, it was removed from the dataset and the missing value was 

replaced by the preceding and forward values in the dataset. 

3.5 Fifth Step-Partition of data 

For a large dataset, data partition and consecutive validation are essential for the effective 

simulation (Li et al., 2017; Yaseen et al., 2021). In the fifth stage, the data was partitioned into two 

parts. 70% of the dataset was deemed the training set, while the remaining 30% was deemed the test set 

(Chang et al., 2021). 

3.6 Sixth Step- Simulation using Naïve and TBATS models 

In the sixth step, the rainfall data was simulated using the Naïve and TBATS models. In case 

of the Naïve forecasts, all simulated values were set to its’ last observation. For a highly seasonal data, 

seasonal Naïve models perform incredibly well (Hyndman & Athanasopoulos, 2018). The seasonal 

Naïve model was expressed here as follows: 
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𝑌𝑇+ℎ|𝑇 = 𝑌𝑇+ℎ−𝑚(𝑘+1)           (4) 

Where, m is the period, which is seasonal and k is the part of (h-1)/m (i.e., the number of years in the 

forecasted period that have been completed before time T+h), T is the observed duration of time and h 

is the simulated time step.  

TBATS is an extended form of the exponential smoothing, which includes the Box-Cox 

procedure to transform the dataset, ARMA model for residuals and the Trigonometric Seasonal method. 

Although its’ computation cost is very high but it can deal with the multi-seasonal data with or without 

too many parameters. The model can work also under the high frequency data (Hyndman & 

Athanasopoulos, 2018). The model was illustrated as follows (Alizadeh et al., 2021; De Livera et al., 

2011): 

𝑌𝑡 = 𝑝𝑡−1 + 𝑎𝑡−1 + 𝑐𝑡
(1)

+ 𝑐𝑡
(2)

+ 𝑓𝑡 ,         (5) 

𝑙𝑡 = 𝑝𝑡−1 + 𝑎𝑡−1 + 𝛼𝑓𝑡,          (6) 

𝑎𝑡 = 𝑎𝑡−1 + 𝛽𝑓𝑡,           (7) 

𝑐𝑡
(1)

= 𝑐𝑡−𝑚1

(1)
+ 𝛾1𝑓𝑡 ,          (8) 

𝑐𝑡
(1)

= 𝑐𝑡−𝑚2

(1)
+ 𝛾2𝑓𝑡           (9) 

Where, seasonal cycles are the 𝑚1 and 𝑚2 . 𝑓𝑡  is the white noise which denotes errors of the 

prediction process. The ‘level’ and ‘trend’ components are the 𝑝𝑡  and 𝑎𝑡  respectively; t is the time 

stamp. 𝑐𝑡
(𝑖)

 is the i-th component at the t time, and those i-th component is seasonal (Hyndman & 

Athanasopoulos, 2018). The coefficients  𝛼, 𝛽, 𝛾1, 𝛾2 are the parameters of smoothing, and the initial 

state variables are 𝑙0, 𝑏0, {𝑐1−𝑚1

(1)
, … … … , 𝑐0

(𝑖)
} , 𝑎𝑛𝑑 {𝑐1−𝑚2

(2)
, … … … , 𝑐0

(2)
}. These are also known as the 

seeds. 

By extending those basic models of exponential smoothing (eq. s 4,5, 6 and 7) De Livera et al. 

(2011) formulated the following descriptions for the TBATS: 

𝑌𝑡
𝜔 = {

𝑌𝑡
𝜔−1

𝜔

𝑙𝑜𝑔𝑌𝑡 ,
, 𝜔 ≠ 0, 𝜔 = 0,                    (10) 

𝑌𝑡
𝜔 = 𝑝𝑡−1 + ∅𝑎𝑡−1 + ∑ 𝑐𝑡−𝑚𝑖

𝑖𝑇
𝑖=1 + 𝑓𝑡 ,                        (11) 

𝑙𝑡 = 𝑝𝑡−1 + ∅𝑎𝑡−1 + 𝛼 × 𝑓𝑡 ,                    (12) 

𝑎𝑡 = (1 − ∅)𝑎 + 𝑎𝑡−1 + 𝛽 × 𝑓𝑡 ,                   (13) 

𝑐𝑡
(1)

= 𝑐𝑡−𝑚𝑖

(1)
+ 𝛾𝑖𝑓𝑡 ,                     (14) 

𝑐𝑡
(1)

= 𝑐𝑡−𝑚𝑖

(1)
+ 𝛾𝑖𝑓𝑡 ,                     (15) 

𝑓𝑡 = ∑ 𝜗𝑖𝑓𝑡−𝑖 + ∑ 𝜃𝑖𝜀𝑡−𝑖
𝑞′

𝑖=1
𝑝′

𝑖=1 + 𝜀𝑡                   (16) 

Where, 𝑚1, … … … . , 𝑚𝑇 denote the seasonal periods. The local level is denoted as 𝑝𝑡 in period 

t, a is the long-run trend in the entire period t, 𝑐𝑡
(𝑖)

 represents the i-th seasonal component in entire 

period t, the 𝐴𝑅𝑀𝐴 (𝑝′,  𝑞′) process, 𝜀𝑡  is the Gaussian process and it has mean value zero and a 

constant variance , which is represented by 𝛿2. The smoothing parameters are given by  𝛼, 𝛽, 𝛾𝑖   for 𝑖 =

1, … … … . , 𝑇. The trigonometric representation of above series is as follows (Abdelgawad et al., 2015): 
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𝑐𝑡
(1)

= ∑ 𝑐𝑗,𝑡
(𝑖)𝑇

𝑖=1 ,                     (17) 

𝑐𝑡
(1)

= 𝑐𝑗,𝑡−1
(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝑐𝑗,𝑡−1
∗(𝑖)

𝑠𝑖𝑛𝜆𝑗
(𝑖)

+ 𝛾1
(𝑖)

𝑓𝑡 ,                 (18) 

𝑐𝑗,𝑡−1
∗(𝑖)

= −𝑐𝑗,𝑡−1
(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝑐𝑗,𝑡−1
∗(𝑖)

𝑐𝑜𝑠𝜆𝑗
(𝑖)

+ 𝛾2
(𝑖)

𝑓𝑡 ,                           (19) 

Where, 𝛾1
(𝑖)

 and 𝛾2
(𝑖)

 are the parameters, which represent smoothing and 𝜆𝑗
(𝑖)

= 2𝜋𝑗 𝑚𝑖⁄ . The 

level (stochastic) of i-th seasonal component is represented by 𝑐𝑗,𝑡
(𝑖)

, and the growth (slow and stochastic) 

of the seasonal component is needed to describe the change in the seasonal component over time t by 

𝑐𝑗,𝑡
∗(𝑖)

. The symbol 𝑘𝑖  stands for the frequency of a i-th seasonal component. For the trigonometric 

seasonal fluctuation; the following equation was used (De Livera et al., 2011; Livera, 2010): 

𝑌𝑡
𝜔 = 𝑝𝑡−1 + ∅𝑎𝑡−1 + ∑ 𝑐𝑡−1

(𝑖)𝑇
𝑖=1 + 𝑓𝑡                  (20) 

The class is designated by TBATS. The TBATS is represented as 

(𝜔, ∅, 𝑝, 𝑞, {𝑚1, 𝑘1}, {𝑚2, 𝑘2}, … … … … … . . , {𝑚𝑇 , 𝑘𝑇}). 

3.7 Seventh Step- Spatial assessments 

The seventh step was marked with the spatial assessments of the observed, fitted and predicted 

models. For this, at first the mean centres were estimated for each district (Figure 2 and Figure 8). Here, 

it was assumed that the total rainfall of a particular district was concentrated in the middle point of a 

particular district. To estimate the exact mean point within every district following procedures were 

implemented with three phases: 

a) First, two tangents were drawn for the X-axis (OX) and Y-axis (OY) respectively. Now, 𝐴𝐴′, 

𝐵𝐵′, 𝐶𝐶′, 𝐷𝐷′, 𝐸𝐸′, 𝐹𝐹′ were drawn respectively for the Jamtara, Deoghar, Dumka, Godda, 

Pakur and Sahibganj districts. 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′, 𝐷𝐷′, 𝐸𝐸′, 𝐹𝐹′ were drawn, which were parallel 

to the X-axis.  

b) Simultaneously, for the Jamtara, Deoghar, Dumka, Godda, Pakur and Sahibganj districts 

respectively, 𝐴𝐴′′, 𝐵𝐵′′, 𝐶𝐶′′, 𝐷𝐷′′, 𝐸𝐸′′ , 𝐹𝐹′′ were also drawn, which were parallel to the Y-

axis.  

c) The meeting point of 𝐴𝐴′′ and 𝐴𝐴′ was the point A, the meeting point of 𝐵𝐵′′ and 𝐵𝐵′ was the 

point B, the meeting point of  𝐶𝐶′′ and 𝐶𝐶′ was the point C, the meeting point of  𝐷𝐷′′ and 𝐷𝐷′ 

was the point D, the intersection point of  𝐸𝐸′′ and 𝐸𝐸′ was the point E and  the insecting point 

of  𝐹𝐹′′ and 𝐹𝐹′ was the point F. A, B, C, D, E and F are the mean centers of the Jamtara, 

Deoghar, Dumka, Godda, Pakur and Sahibganj districts, which were considered as the stations. 

d) For the spatial evaluations in the ARCMAP 10.5 platform, the Inverse Distance Weightage 

(IDW) approach was used after computing mean centre. 

3.8 Eighth Step- Accuracy assessments and significance test 

3.8.1 Accuracy assessments 

The seventh step was marked by the accuracy assessments of the different models. Here, Mean 

Absolute Scaled Error (MASE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 

Mean Error (ME) and Correlation Coefficient (R) were used to judge the accuracy of every model. 

Descriptions of different errors were discussed as follows: 

3.8.1.1 Mean Absolute Scaled Error (MASE) 

For the time series (seasonal), the MASE was estimated by utilizing the following formula 

(Franses, 2016): 
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𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(
|𝑒𝑗|

1

𝑇−𝑚
∑ |𝑌𝑡−𝑌𝑡−𝑚|𝑇

𝑡=𝑚+1

)                            (21) 

Where, |𝑒𝑗| is the prediction error for a specific time and j is quantity of forecasts. The (𝑌𝑗) is the 

standardized rainfall dataset (actual or the observed value), and  𝐹𝑗   is the forecasted or predicted 

dataset; here 𝑒𝑗 = 𝑌𝑗 − 𝐹𝑗. Here, seasonal period or seasonality is represented by m. T is the number of 

time or the total time frame considered in this research. 

3.8.1.2 Mean Absolute Error (MAE) 

MAE is popular measurement of accuracy; can be expressed as follows (Wang & Lu, 2018): 

𝑀𝐴𝐸 =
∑ |𝑌𝑖−𝐹𝑖|𝑇

𝑖=1

𝑇
=

∑ |𝑒𝑖|𝑇
𝑖=1

𝑇
                                (22) 

Here, T is the total time frame; 𝑌𝑖 is actual or observed value; 𝐹𝑖 is modelled or fitted value for 

the TBATS and Naïve model. e is the error term which represents 𝑌𝑖 − 𝐹𝑖. MAE takes the modulas of 

the numerator. 

3.8.1.3 Root Mean Squared Error (RMSE) 

 RMSE is the standard deviation of the actual or observed value and the modelled or predicted 

dataset. RMSE represents how spread out the residuals are. The RMSE is represented as follows (Chai 

& Draxler, 2014; Raha & Gayen, 2020): 

𝑅𝑀𝑆𝐸 =
√∑ (𝑌𝑖−𝐹𝑖)2𝑇

𝑡=1

√𝑇
                    (23) 

Here, T is the total time frame; 𝑌𝑖 is the standardized rainfall dataset (actual or observed model); 𝐹𝑖 is 

the fitted value for the TBATS and Naïve model. 

3.8.1.4 Mean Error (ME) 

The ME can be expressed as follows (Lee et al., 2015): 

𝑀𝐸 =
∑ (𝑌𝑖−𝐹𝑖)𝑇

𝑖=1

𝑇
                     (24) 

Here, T is the total time frame; 𝑌𝑖 is the standardized rainfall dataset (actual or observed value); 

𝐹𝑖 is the fitted model for the TBATS and Naïve model. 

3.8.1.5 Correlation Coefficient (R) 

The Pearson correlation coefficient was determined using the following formula (Mukaka, 

2012; Raha & Gayen, 2020): 

𝑟 =
∑(𝑌𝑖−𝑌̅)(𝑀𝑖−𝑀̅)

√∑(𝑌𝑖−𝑌̅)2√∑(𝑀𝑖−𝑀̅)2
                    (25) 

Where, r is correlation coefficient between two dataset; 𝑌𝑖 is the standardized rainfall dataset (observed 

model), 𝑌̅ is the mean of the standardized rainfall dataset; 𝑀𝑖 is the fitted or predicted rainfall dataset 

run by the Naïve or TBATS model; 𝑀̅ is the mean of the fitted or predicted rainfall dataset run by the 

naïve or TBATS model. 

3.8.2 Significance test by Wilcoxon Signed Rank Test: 

The significance test was done by the Wilcoxon Signed Rank Test. This test is especially 

applicable for a paired or single framed data. For each station, each model was tested at 95% confidence 

interval using this test. After computing the total number of data points (𝑌1, 𝑌2, … … … , 𝑌𝑛); total dataset 



 

245 
 

Shrinwantu Raha & Shasanka Kumar Gayen / Geosfera Indonesia 7 (3), 2022, 236-263 

 

was sorted and the rank (𝑅1, 𝑅2, … … … , 𝑅𝑛) for respective data points were assigned. Therefore, the 

equation of Wilcoxon Signed Rank Test was expressed as follows (Bauer, 1972; Myles et al., 2013): 

𝑀 = ∑ 𝑠𝑔𝑛(𝑌𝑖
𝑇
𝑖=1 )𝑅𝑖                    (26) 

Where, M is the signed rank test; 𝑌𝑖 represents the standardized rainfall dataset (observed model) and 

𝑅𝑖 is the rank at each of the data point. 

 

Figure 2. Methods 

 

 

4. Results 

4.1 Descriptive Analysis of The Downloaded Rainfall Dataset 

Station wise mean and standard deviation of rainfall were portrayed in the Table 1. Dumka 

station was noticed with the highest mean (123.662 mm.) and standard deviation of rainfall (149.929). 

The coefficient of variation of rainfall was high at the Dumka and Godda meteorological stations. The 

Jamtara station was marked with a comparatively low mean rainfall (115.337) and standard deviation 

of rainfall (138.419). The lowest variation of rainfall was identified for the Pakur station (Table 1). 

Overall, for all station, the CV of (~Coefficient of Variation of) rainfall varies from 117% to 124% 

(Table 1). For all meteorological station, decreasing PACF with increasing lags were found (Figure 3a 

to 3f). For every station, only one data point is identified as outliers by Grubbs outlier test (Figure 4). 

For the Jamtara (Figure 4a), Deoghar (Figure 4b), Dumka (Figure 4c), Godda (Figure 4d) and Pakur 

(Figure 4e) stations 1197th row was identified as the outlier, which is 1.0. For the Sahibganj station 
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(Figure 4f), 1137th row was marked as the outlier. For all cases, the outliers were significant at 95% 

confidence interval. 

Table 1. Station wise mean rainfall (mm.), standard deviation of rainfall and coefficient of variation of 

rainfall 

 

 

 

Figure 3. Partial Autocorrelation at several stations in the Santhal Pargana Division:  (a) Jamtara Station; (b) 

Deoghar station; (c) Dumka station; (d) Godda station; (e) Pakur station; (f) Sahibganj station 

 

Estimated 

mean 

centres 

Name of the 

mean centres 

(considered 

as stations) 

Longitude Latitude 

Mean 

rainfall 

(mm) 

Standard 

deviation of 

rainfall 

Coefficient of 

variation of 

rainfall 

A Jamtara 86.8171 23.9505 115.337 138.419 120.012 

B Deoghar 86.5948 24.4852 111.042 137.855 124.146 

C Dumka 87.2722 24.5846 123.662 149.929 121.240 

D Godda 87.3140 24.8619 118.458 144.796 122.234 

E Pakur 86.6376 24.5802 118.392 138.758 117.202 

F Sahibganj 87.6454 25.2381 121.485 147.705 121.582 
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Figure 4. Schematic diagramme of outlier plot for different meteorological stations (a) Jamtara Station (b) 

Deoghar station (c) Dumka station (d) Godda station (e) Pakur station f. Sahibganj station 

 

4.2 Station Wise Comparative Assessments of Observed and Simulated Models 

For all stations, the observed model (standardized rainfall) and simulated models were fitted 

with each other entirely (Figure 5a, 5b, 5c and 5d; Figure 6a, 6b, 6c, 6d; Figure 7a,7b,7c,7d). For the 

Jamtara station, the sum of the standardized rainfall was 168.7262mm. For the Naïve fitted model, the 

rainfall was 116.8509 mm. In case of naïve predicted model, 60.2492 mm. rainfall was obtained. For 

the TBATS fitted and TBATS predicted models the rainfall was marked as 116.3617 and 50.6951 mm. 

respectively (Figure 5a and Figure 5b). The best fitted TBATS model for the Jamtara station was 

specified in the Table 2 (1, {0,0}, -, {<12,4>}). The α, 𝛾1, and 𝛾2 values were 0.0056, -0.0006, and 

0.002 respectively. The autocorrelation function (ACF1) is 0.0421 and the sigma value is 0.0661. 

For the Deoghar station, the Naïve fitted and Naïve predicted model-based rainfall values were 

obtained as 111.8012 mm. and 63.6812 mm. respectively. The observed standardized rainfall value was 

164.6511 mm. For the TBATS fitted and TBATS predicted models the rainfall was obtained as 

112.8640 mm. and 50.5391 mm. respectively (Figure 5c and 5d). The best fitted TBATS model for the 

Deoghar station was specified in the Table 2 (1, {0,0}, -, {<12,4>}). The α, 𝛾1, and 𝛾2 were 0.0050, -

0.0009, and 0.0020 respectively. The autocorrelation function (ACF1) is 0.0094 and the sigma value is 

0.0708. 

Table 2. Model information of TBATS 

Station Name (ω, p, q, ø) α, 𝜸𝟏, 𝜸𝟐 ACF1 Sigma 

Jamtara [1, {0,0}, -, {<12,4>}] 0.0056, -0.0006, 0.002 0.0421 0.0661 

Deoghar [1, {0,0}, -, {<12,4>}] 0.0050, -0.0009, 0.0020 0.0094 0.0708 

Dumka [1, {0,0}, -, {<12,4>}] 0.0072, -0.0009, 0.0020 0.0381 0.0487 

Godda [1, {0,0}, -, {<12,5>}] 0.0099, 0.0013, 0.0024 -0.0023 0.0905 

Pakur [1, {0,0}, -, {<12,4>}] 0.0103, -0.0002, 0.002 0.0034 0.0787 

Sahibganj [1, {0,0}, -, {<12,5>}] 0.0110, 0.0013, 0.0020 -0.0272 0.0804 
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Figure 5. Observed and simulated models at Jamtara and Deoghar station 

 

For the Dumka station, the observed rainfall was obtained as 124.0347. Simulation of rainfall 

by the Naïve fitted and Naïve predicted rainfall were obtained as 84.4127 and 41.2499. The simulated 

rainfall value for the TBATS fitted and TBATS predicted models were marked as 84.1075 mm. and 

37.1244 mm. respectively (Figure 6a and 6b). The best fitted TBATS model for the Dumka station was 

specified in the Table 2 (1, {0,0}, -, {<12,4>}). The α, 𝛾1, and 𝛾2 were 0.0072, -0.0009, and 0.0020 

respectively. The autocorrelation function (ACF1) is 0.0381 and the sigma value is 0.0487. 

The observed standardized rainfall for the Godda station was 217.6787. The Naïve fitted and 

Naïve predicted rainfall for the Godda station were identified as 149.2579 mm. and 67.0600 mm. 

respectively. The TBATS fitted and TBATS predicted rainfall were identified as 149.2651 mm. and 

62.9941 mm. respectively for the Godda meteorological station (Figure 6c and 6d). The best fitted 

TBATS model for the Godda station was specified in the Table 2 (1, {0,0}, -, {<12,5>}). The α, 𝛾1, and 

𝛾2 were 0.0099, 0.0013, and 0.0024 respectively. The autocorrelation function (ACF1) is -0.0023 and 

the sigma value is 0.0905. 

For the Pakur station, the sum of the standardized rainfall was 193.6738 mm. The Naïve fitted 

and Naïve predicted model based simulated rainfall was obtained as 133.9177 mm. and 61.1255 mm. 

For the TBATS fitted and TBATS predicted models, the simulated rainfall values were obtained as 

133.9457 mm. and 59.8102 mm. respectively (Figure 7a and 7b). The best fitted TBATS model for the 

Pakur station was specified in the Table 2 (1, {0,0}, -, {<12,4>}). The α, 𝛾1, and 𝛾2 were 0.0103, -

0.0002, and 0.002 respectively. The autocorrelation function (ACF1) is 0.0034 and the sigma value is 

0.0787. 
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Figure 6. Observed and simulated models at Dumka and Godda station 

 

   Figure 7. Observed and simulated models at the Pakur and Sahibganj station 
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The standardized rainfall total for the Sahibganj station was 186.281 mm.. The Naïve fitted and 

Naïve predicted model based simulated rainfall were identified as 124.3170 mm. and 60.5400 mm.. For 

the TBATS fitted and TBATS predicted models, the simulated rainfall values were marked as 125.1150 

mm. and 51.4930 mm. respectively (Figure 7c and Figure 7d). The best fitted TBATS model for the 

Sahibganj station was specified in the Table 2 (1, {0,0}, -, {<12,5>}). The α, 𝛾1, and 𝛾2 were 0.0110, 

0.0013, and 0.0020 respectively. The autocorrelation function (ACF1) is -0.0272 and the sigma value 

is 0.0804. 

4.3 Station Wise Correlation of Each Models 

The correlation matrix of each models for each station were portrayed at Table 3. For the 

Jamtara station, the Naïve fitted and TBATS fitted models were noticed with highest correlation 

coefficient value (i.e., 0.896). Highest negative correlation coefficient (-0.278) was found for the 

TBATS fitted and TBATS predicted models. Other models were noticed low to moderate positive or 

negative correlation coefficient for the Jamtara station. For the Deoghar station, Naïve predicted and 

TBATS predicted models were marked with the highest positive correlation coefficient (i.e., 0.878). 

The highest negative correlation coefficient (-0.249) was found for the TBATS fitted and TBATS 

predicted models. For the other models, the correlation coefficient value varied from 0.3 to 0.6.  

For the Godda station, Naïve fitted and Tbats fitted and Naïve mean and TBATS predicted 

models were identified with comparatively high correlation coefficient value (i.e., 0.882 and 0.932 

respectively). The highest negative correlation coefficient was found for the TBATS fitted and TBATS 

predicted models. Moderate correlation coefficient value (positive or negative; +-0.3<r<0.6) was 

marked for all other models, which were described in Table 3. Similarly, for the Pakur station, the Naïve 

predicted and TBATS predicted models were observed with the highest correlation coefficient value 

(i.e., 0.932). The highest negative correlation coefficient was found for the TBATS fitted and TBATS 

predicted models (i.e., -0.310). TBATS fitted and Naïve fitted models were marked with comparatively 

high (>0.8) correlation coefficient value. Other models were noticed with low to moderate correlation 

coefficient value (+-0.3<r<0.6). Table 3 entails the detailed measurement of observed and simulated 

models for the Pakur station. 

For the Sahibganj station, the Naïve fitted and TBATS fitted and as well as the Naïve predicted 

and TBATS predicted models were noticed with comparatively higher correlation coefficient value (i.e., 

0.969 and 0.866). The lowest correlation coefficient value was marked for the Naïve predicted and 

TBATS fitted models (i.e., -0.295). Other models are marked with moderate to high correlation 

coefficient value (positive or negative stretches from 0.3 to 0.6). The detailed measurement for the 

observed and simulated models were portrayed in the Table 3. 

 

                                         Table 3. Station wise correlation matrix of every models 

Station Jamtara 

STN Rainfall 

(Observed 

model) 

Naïve Fitted Naïve Predicted TBATS Fitted 
TBATS 

Predicted 

STN_Rainfall 

(Observed model) 

1.000     

Naïve Fitted 0.575 1.000    

Naïve Mean 0.337 -0.217 1.000   

TBATS Fitted 0.656 0.896 -0.235 1.000  

TBATS Predicted 0.365 -0.257 0.914 -0.278 1.000 
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Station Deoghar 

STN Rainfall 

(Observed 

model) 

Naïve Fitted Naïve Predicted TBATS Fitted 
TBATS 

Predicted 

STN_Rainfall 

(Observed model) 

1.000     

Naïve Fitted 0.560 1.000    

Naïve Mean 0.313 -0.201 1.000   

TBATS Fitted 0.577 0.780 -0.203 1.000  

TBATS Predicted 0.356 -0.247 0.878 -0.249 1.000 

Station 

Dumka 

STN Rainfall 

(Observed 

model) 

Naïve Fitted Naïve Predicted TBATS Fitted 
TBATS 

Predicted 

STN_Rainfall 

(Observed model) 

1.000     

Naïve Fitted 0.530 1.000    

Naïve Mean 0.357 -0.236 1.000   

TBATS Fitted 0.611 0.890 -0.258 1.000  

TBATS Predicted 0.386 -0.264 0.927 -0.288 1.0000 

Station 

Godda 

STN_Rainfall 

(Observed 

model) 

Naïve Fitted Naïve Predicted TBATS Fitted 
TBATS 

Predicted 

STN_Rainfall 

(Observed model) 

1.000     

Naïve Fitted 0.545 1.000    

Naïve predicted 0.314 -0.228 1.000   

TBATS Fitted 0.628 0.885 -0.253 1.000  

TBATS predicted 0.381 -0.249 0.879 -0.278 1.000 

Station 

Pakur 

STN_Rainfall 

(Observed 

model) 

Naïve Fitted Naïve Predicted TBATS Fitted 
TBATS 

Predicted 

STN_Rainfall 

(Observed model) 

1.0000     

Naïve Fitted 0.542 1.000    

Naïve Predicted 0.328 -0.253 1.000   

TBATS Fitted 0.624 0.882 -0.282 1.000  

TBATS Predicted 0.357 -0.277 0.932 -0.310 1.000 

Station 

Sahibganj 

STN_Rainfall 

(Observed 

model) 

Naïve Fitted Naïve Predicted TBATS Fitted 
TBATS 

Predicted 

STN_Rainfall 

(Observed model) 

1.000     

Naïve Fitted 0.491 1.000    

Naïve Predicted 0.386 -0.258 1.000   

TBATS Fitted 0.574 0.866 -0.295 1.000  

TBATS Predicted 0.413 -0.254 0.969 -0.289 1.000 

 

 

 

 



 

252 
 

Shrinwantu Raha & Shasanka Kumar Gayen / Geosfera Indonesia 7 (3), 2022, 236-263 

 

 

4.4 Spatial Assessments 

Within the study area, the standardized rainfall varied from 124.044 mm. to 217.675 mm. The 

Dumka station was noticed with comparatively low rainfall. On the contrary, the Godda station was 

marked with comparatively higher rainfall. Remaining stations were marked with moderate to high 

amount of standardized rainfall (Figure 9a). For the Naïve fitted model, the standardized rainfall 

fluctuates from 84.419 mm. to 149.225 mm. The Naïve fitted value was comparatively low for the 

Dumka station and high for the Godda station. Remaining stations were noticed with moderate to high 

standardized rainfall (Figure 9b). The Deoghar station was noticed with comparatively low rainfall for 

the Naïve predicted model. The Godda, Deoghar and Sahibganj stations were identified with 

comparatively high rainfall for the Naïve predicted model. Overall, for the Naïve predicted model, the 

rainfall varied between 8.133 mm. to 67.059 mm. (Figure 9c). For the TBATS fitted model, the rainfall 

fluctuated from the 37.127 mm. to 62.993 mm. Dumka station was noticed with comparatively low 

rainfall (i.e.,37.127 mm.). Deoghar and Jamtara stations were marked with moderate rainfall. 

Remaining stations i.e., Godda, Sahibganj and Pakur stations were marked with comparatively high 

rainfall for the TBATS fitted model (Figure 9d). Similar, spatial pattern was noticed for the other 

stations (Figure 9e).  

 

Figure 8. Assessment of mean centre for the meteorological station 
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Figure 9. Spatial assessments of different observed and simulated models : a. Standardized rainfall (observed) b. 

Naïve fitted c. Naive predicted d. TBATS fitted e. TBATS predicted 

4.5 Station Wise Comparative Assessments of Accuracy of Each Model  

For the Naïve model, the Godda station was noticed with a comparatively high combined error. 

The lowest combined error was found for the Pakur station in case of Naïve models. By combining all 

stations, for the Naïve models, the highest combined error was found for the Godda station and the 

lowest error was marked for the Pakur station. For the Naïve model, the Mean Error (ME) was 

comparatively high for the Godda (0.0005), Jamtara (0.0005) and Sahibganj (0.0005) stations. For the 

Naïve model the Mean Error (ME) was comparatively low for the Deoghar station. For the Naïve model, 

the RMSE was comparatively low for the Pakur station (0.0004) and it was comparatively high for the 

Godda (0.1313), Deoghar (0.1013) and Sahibganj station (0.1157). The Mean Absolute Error (MAE) 

was comparatively high for the Godda, Sahibganj and Pakur meteorological stations and comparatively 

low for the Dumka (0.044) and Jamtara stations (0.0596). MASE was equal for all the stations in case 

of the Naïve models. R was comparatively high for the Deoghar and Dumka station and it was 

comparatively low for the Pakur station. For the Naïve model, the MASE was comparatively high 

(6.000) rather than the Mean Error (ME), which was comparatively low (0.0024) (Figure 10). The 

detailed calculation for the Naïve model is portrayed in Table 4 and Figure 10. 

For the TBATS model, the ME was relatively high (0.0028) for the Deoghar station and low 

for the Sahibganj station (0.0009). RMSE was comparatively high for the Godda (0.0905) and 

Sahibganj station and it was low for the Pakur station (0.0017). The MAE (0.0577) was comparatively 

high for the Godda station and low (0.0306) for the Dumka station. MASE was comparatively high for 

the Pakur (0.7123) and Sahibganj stations (0.7124) and comparatively low for the Dumka (0.6966), 

Godda (0.6977) and Deoghar stations (0.6967). Combinedly, the Godda (0.8478) and Sahibganj stations 

(0.8444) were noticed with the highest combined error and the Pakur (0.7668) and Dumka (0.7773) 

stations were marked with the lowest combined error. Combinedly, TBATS model had achieved 

relatively low error (4.8614) rather than the Naïve model (6.9097). MASE was relatively high for the 

TBATS (4.2173) and ME was comparatively low for the TBATS model (0.0107) (Figure 11). The 

correlation coefficient (R) is comparatively high for the Jamtara and Godda station and comparatively 

low for the Deoghar station. The detailed calculation was portrayed in Table 4 and Figure 11. The 

combined error was comparatively high (1.3522) for the Godda station and it was comparatively low 
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(1.2574) for the Pakur station. At the 95% confidence interval, all models are significant at 95% 

confidence interval (Table 5). 

Table 4. Station wise comparative study of accuracy of Naïve and TBATS models 

Station name ME Naive RMSE Naive MAE Naive MASE Naive R Naive SUM 

Deoghar 0.0002 0.1013 0.0618 1 0.4435 1.6068 

Dumka 0.0003 0.0712 0.044 1 0.4435 1.559 

Godda 0.0005 0.1313 0.0827 1 0.4295 1.644 

Jamtara 0.0005 0.0962 0.0596 1 0.4365 1.5928 

Sahibganj 0.0005 0.1157 0.0713 1 0.4385 1.626 

Pakur 0.0004 0.0004 0.0717 1 0.435 1.5075 

Sum (Aggregated) 0.0024 0.5161 0.3911 6 2.6265 9.5361 

Station name 
ME 

TBATS 

RMSE 

TBATS 

MAE 

TBATS 

MASE 

TBATS 
R TBATS SUM 

Deoghar 0.0028 0.0708 0.0433 0.6967 0.4671 1.2807 

Dumka 0.0014 0.0487 0.0306 0.6966 0.4985 1.2758 

Godda 0.0018 0.0905 0.0577 0.6977 0.5045 1.3522 

Jamtara 0.0021 0.0661 0.0418 0.7016 0.5105 1.3221 

Sahibganj 0.0009 0.0804 0.0508 0.7123 0.4935 1.3379 

Pakur 0.0017 0.0017 0.0511 0.7124 0.4905 1.2574 

Sum (Aggregated) 0.0107 0.3582 0.2753 4.2173 2.9646 7.8261 

 
Table 5. Station wise significance test of each model 

Station name Name of the model Wilcoxon Rank test of each model and P-value** 

Jamtara Observed model V = 861328, p-value < 2.2e-16 

 Naïve fitted V = 414505, p-value < 2.2e-16 

 Naïve predicted V = 52650, p-value < 2.2e-16 

 TBATS fitted V = 501582, p-value < 2.2e-16 

 TBATS predicted V = 92862, p-value < 2.2e-16 

Deoghar Observed model V = 849556, p-value < 2.2e-16 

 Naïve fitted V = 392055, p-value < 2.2e-16 
 Naïve predicted V = 52650, p-value < 2.2e-16 

 TBATS fitted V = 402753, p-value < 2.2e-16 

 TBATS predicted V = 92862, p-value < 2.2e-16 

Dumka Observed model V = 860016, p-value < 2.2e-16 
 Naïve fitted V = 411778, p-value < 2.2e-16 

 Naïve predicted V = 64980, p-value < 2.2e-16 

 TBATS fitted V = 502879, p-value < 2.2e-16 

 TBATS predicted V = 92862, p-value < 2.2e-16 

Godda Observed model V = 848253, p-value < 2.2e-16 

 Naïve fitted V = 408156, p-value < 2.2e-16 

 Naïve predicted V = 78606, p-value < 2.2e-16 

 TBATS fitted V = 499607, p-value < 2.2e-16 
 TBATS predicted V = 90900, p-value < 2.2e-16 

Pakur Observed model V = 846951, p-value < 2.2e-16 

 Naïve fitted V = 401856, p-value < 2.2e-16 

 Naïve predicted V = 78606, p-value < 2.2e-16 
 TBATS fitted V = 503470, p-value < 2.2e-16 

 TBATS predicted V = 93528, p-value < 2.2e-16 

Sahibganj Observed model V = 832695; p-value < 2.2e-16 

 Naïve fitted V = 399171; p-value < 2.2e-16 
 Naïve predicted V = 78606; p-value < 2.2e-16 

 TBATS fitted V = 498594; p-value < 2.2e-16 

 TBATS predicted V = 90900; p-value < 2.2e-16 

Note : **95% confidence interval 



 

255 
 

Shrinwantu Raha & Shasanka Kumar Gayen / Geosfera Indonesia 7 (3), 2022, 236-263 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Accuracy assessment for the Naïve models 

 

 

 

 

 

 

 

 

 

Figure 11. Accuracy assessments for the TBATS model 

 

5.  Discussion 

The predictive pattern of rainfall in the Santhal Pargana Division of the Jharkhand state, India 

is consistent with the rainfall patterns of both Jharkhand and across all India. Potential causes of such 

tendency may be closely related to geo-environmental factors like global climate change (Kayet et al., 

2022). The association between the India's monsoon patterns and ENSO changed around 1990 and 

reached its’ peak positivity in the past ten years and therefore it demonstrates a recent deterioration in 

the relationship between ENSO and the monsoon (Bhardwaj et al., 2020). Walker circulation 

shifts southward, as a result, global warming, and greater surface temperatures become prominent in 

these sections and those are the real cause of such a relationship (Kundu & Mondal, 2019). Therefore, 

a single ENSO event is unable to explain the rainfall pattern in the context of Santhal Pargana. From a 

wider viewpoint, the crippling of the easterly and south-easterly jet stream and the exhilaration of the 

equatorial ocean are two local events that typically influence the increasing tendency of rainfall at 

eastern portions of the Jharkhand (Yadav, 2022). The study of rainfall in these sections is devoted to 

local level variability of rainfall at six meteorological stations. As a result, the impact of ENSO and the 
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effects of other climatological phenomena were not evaluated here. The local level aspects, such as 

the topography, altitude, gradient, etc., and modifications in agricultural property due to the introduction 

of irrigated agriculture, deforestation, and growing urban expansion are what this research had 

fundamentally implied (Kundu & Mondal, 2019). The Santhal Pargana has crystalline bedrock that were 

once part of a granitic environment and was thinly covered by a worn mantle (Mandal & Ray, 2015). 

These sections have dispersed shallow rupture zones, which are unable to hold enough groundwater ( 

Das et al., 2022). According to Upadhayay et al. (2019), weathered fracture zone restricts the amount 

of groundwater in the Santhal Pargana division. The fracture zone exhibits secondary porosity, which 

denotes the development of a thick profile in the porous material. The hard, cemented rock is getting 

weathered continuously and as a result the secondary porosity is noticed. Generally, the Santhal Pargana 

division has experienced moderate rainfall (Shree & Kumar, 2018).  

The results presented in this research are also easily comparable with other research activities 

done in other portions or blocks of the Jharkhand State. Shree & Kumar (2018) assessed the rainfall 

trends of the Ranchi District, Jharkhand using nonparametric measurements (i.e., MK test and Sen’s 

slope). The maximum decrease of rainfall was found in the Monsoon and minimum decrease was found 

in the Winter. High variation of rainfall was noticed for the entire region, and these sections are prone 

to droughts and floods. Sharma & Singh (2021) analysed the seasonality of rainfall for the Jharkhand 

State, India over the last decade (1901-2002). Significant decreasing trend was obtained by the authors 

for the Deoghar, Dumka, Godda, Pakur and Sahibganj districts. Tirkey et al. (2018) looked at the rainfall 

distribution in the state of Jharkhand and discovered a drop of 26 to 270 mm to with an increasing rate 

upto 19 to 440 mm. Bahadur et al. (2020) assessed the rainfall trend at the Hazaribagh State, Jharkhand 

and found an increasing trend in the Summer rainfall. Gupta & Kumar (2018) evaluated the variance in 

rainfall in the Garhwa District of the state of Jharkhand and discovered that the rainfall during the Kharif 

season was of a consistent nature. Overall, a decreasing rainfall trend was obtained by the authors. 

Zamani et al., (2018) also illustrated the daily, seasonal and annual rainfall trends of the Jharkhand state, 

India and found overall decreasing tendency of rainfall. All of the above research works done in these 

sections of the Santhal Pargana Division, are supported by the present research work. With the help of 

the comparative assessment charts (Figure 5,6,7 and 8) it is proved that the rainfall in these portions is 

highly seasonal and consistent. The nature of PACF (Figure 3a to 3f) at each meteorological station of 

the study area also proved it. The spatial pattern (Figure 9a to 9e) also confirms that the Dumka and 

Sahibganj districts experience comparatively low and high rainfall respectively in the Santhal Pargana 

Division of the Jharkhand State. All of the research works done on these sections concentrated on the 

trends and tendency of the rainfall. Till date, hardly any research activities were found on the simulation 

and predictive pattern of the Santhal Pargana Division of the Jharkhand State. The study of rainfall in 

the Santhal Pargana Division of the State of Jharkhand is therefore accelerates a new dimension of 

applied climatology, and have an immense applicability to strategize the agricultural planning of the 

study area. 

6. Conclusion 

In this research an attempt was made to simulate the monthly rainfall during 1901 to 2020 using 

the Naive and TBATS model. To do it, an eight-step procedure was followed. After downloading the 

monthly rainfall for the Santhal Pargana Division, India during 1901 to 2020 (first step), the Partial 

Auto Correlation Function (PACF) was checked for different time lags (Second step). Here, the 

decreasing lags with increasing time steps were obtained, therefore, the experiment moved into the next 

step. Next, the rainfall dataset was standardized (0 to 1) (Third step) and the outliers were checked.  If 

two or more significant outliers were found outside the range of the standardized dataset (0 to 1), then 

the outliers were removed and it was replaced by the mean of the preceding and forwarding values of 

the standardized rainfall dataset. The fourth step was marked by the division of the rainfall dataset to 
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training (70% of the total rainfall dataset) and test data (30% of the total rainfall dataset). Test dataset 

were also considered for the validation dataset. Next, the TBATS and Naive models were used to 

simulate the rainfall (Sixth step). The spatial assessments were done individually for the standardized 

rainfall (observed model), TBATS fitted, TBATS predicted, Naive fitted and Naive predicted models 

at the seventh step. Here, the Godda station was identified for the Naive model with a high combined 

error. On contrary, the Pakur station had the lowest error. A comparable outcome was also attained 

using the TBATS model. The standardized rainfall's spatial evaluation ranged from 84.419 mm to 

149.225 mm. Rainfall for the Naive Predicted Model ranged from 8.133 mm to 67.059 mm. Rainfall 

varied for the TBATS fitted model, ranging from 37.127 mm to 62.993 mm. It was noted that the Dumka 

station had relatively little amount of rainfall (i.e.,37.127 mm.). A fair amount of rainfall was noticed 

for the Deoghar and Jamtara stations. The eighth step was marked by the accuracy assessment of each 

model by using the Mean Absolute Scaled Error (MASE), Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Correlation Coefficient (R) and Mean Error (ME). Due to the TBATS's lower 

cumulative error, it was discovered with a better degree of accuracy. Significance test for each model 

at each station was done using the Wilcoxon Test at the eighth step. For each station, all models were 

significant at 95% confidence interval. The result produced in this research is fruitful one as it can be 

easily utilized for the local level agricultural planning of the Santhal Pargana Division of the Jharkhand 

state, India. 
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