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Abstract 

Flood is one of the most frequent hydrometeorological disasters which leads in economic 

losses. The first step in flood disaster mitigation efforts is mapping vulnerable areas. 

Kencong District frequently affected by the annual flooding event. This study aims to assess 

flood hazard mapping by integrating the AHP method and Geographic Information System. 

This study used a descriptive quantitative approach through the correlation matrix of the AHP 

model for each physical environmental factor. These factors include slope, altitude, distance 

from the river, soil type, Topographic Wetness Index (TWI), and Curvature. Furthermore, 

with the Geographic Information System (GIS), the weighted overlay stage was carried out to 

obtain the results of flood-prone areas. Based on the AHP analysis, the most significant 

factors in determining flood-prone areas were the distance from rivers, slopes, and TWI. The 

results of flood-prone areas mapping were divided into five classes: from deficient 0.02%, 

low 4.26%, medium 37.11%, high 51.89%, and very high 6.72%. Validation of GIS mapping 

results with data in the field has an AUC value of 84%, which indicates that the prediction of 

the AHP-GIS model is perfect in flood-prone areas mapping in the Kencong District. The 

integration of AHP method and Geographic Information System in flood hazard assessment 

were able to produce a model to evaluate the spatial distribution of flood-prone areas. 

 

Keywords : Flood Hazard Mapping; Multi-criteria decision analysis; AHP Model; GIS; 

Jember 

 

1. Introduction 

Flood is one of the natural disasters with a high frequency of occurrence that can 

cause damage to the natural environment, buildings, property, and even fatalities (Kia et al., 

2012; Vorogushyn et al., 2012). It is estimated by Feng & Lu (2010) that of the total 

economic losses from all disasters, 40% are caused by floods. Djalante & Garschagen (2017) 

 

                Geosfera Indonesia                              
Vol. 6 No. 3, December 2021, 353-376 

p-ISSN 2598-9723, e-ISSN 2614-8528                                                                                                                                         

https://jurnal.unej.ac.id/index.php/GEOSI          

DOI : 10.19184/geosi.v6i3.21668 

 

*Corresponding author. 

Email address :mujib@unej.ac.id (Muhammad Asyroful Mujib) 

 

https://orcid.org/0000-0002-5061-9640
https://orcid.org/0000-0002-3916-8930
https://orcid.org/0000-0001-9169-632X
https://orcid.org/0000-0001-8001-168X


 

354 
 

Muhammad Asyroful Mujib et al. / Geosfera Indonesia 6 (3), 2021, 353-376 

 

describe that in Indonesia during the period 1900-2015, floods and earthquakes were the most 

frequent hydrometeorological disasters compared to other disasters. Urban areas have a high 

disasters susceptibility based on their size and population density (Zheng et al., 2013). 

Dynamic changes such as changes in land use, land cover, urbanization activities, and 

increased household density in flood-prone areas will increase the potential for flood damage 

(Pelling, 2003; Tehrany et al., 2015). Flood is also directly caused by high rainfall, which 

affects the volume of runoff, filling, and even exceeding the drainage channel network, 

resulting in very high discharge downstream and at the outlet of the watershed (Youssef et 

al., 2009) 

Jember Regency has a high frequency of flood events. Jember Regency and 17 other 

districts in East Java in 2020 had a high-Risk Index for floods with a score of 36.00 (BNPB, 

2021). In 2019, BNPB also published sub-districts or villages prone to flooding throughout 

Indonesia. Based on this data, there are 216 villages in 31 sub-districts in Jember Regency, 

identified as “Medium” flood hazard class (BNPB, 2019). One of the 31 flood-prone sub-

districts in Jember Regency, which is almost every year affected by floods including 

Kencong District. Kencong District is included in the downstream Tanggul watershed area, a 

watershed in Jember Regency that often overflows during the rainy season (Ainunnisa et al., 

2020).  

Villages in the Kencong District that are included in the Tanggul watershed area and 

are often affected by floods are Kencong, Kraton, and Paseban Villages (Haq et al., 2020). 

Also added by Haq et al., (2020) sourced from the report of the Public Works Department of 

Highways and Natural Resources of Jember Regency Natural Resources Coordinator Area of 

Kencong and Gumukmas Districts (2018) that from 1994 to 2018 in the last 25 years, there 

have been 27 flood events, river discharge during flood events ranges from 461-814 m3/s 

with an average rainfall of 76-138 mm. Flood history is also emphasized by the Public Works 

Department of Highways and Natural Resources of Jember Regency Natural Resources 

Coordinator Area of Kencong and Gumukmas Districts (2021), which stated 100 mm/day 

rainfall in every time the Tanggul watershed, the Tanggul River discharge would rise and fall. 

Water carries mud sedimentation from upstream, which can gradually cause the river body to 

become narrower; even when the peak discharge conditions are flooded, it will break the 

river embankment, and so far, nine times the river embankment has collapsed due to 

overflowing river discharge. 

Mapping of flood-prone areas and historical records of events have a relevant role in 

identifying flood-prone areas, the intensity of events, the depth of flooding, and the damage 
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that will be caused. There are three main approaches to mapping flood-prone areas: a 

physical-based approach, an empirical approach, and physical modeling (Mudashiru et al., 

2021; Teng et al., 2017; Bellos, 2012). Physical modeling requires experiments to validate 

the model's predictive performance (Mudashiru et al., 2021). It can then be simulated in 1, 2, 

and 3-dimensional forms using a numeric model to determine the process of flooding 

(Carmo, 2020; Balica et al., 2013), such as numerical models using Delft3D in the Tanggul 

watershed (Haq et al., 2020), the use of HEC-RAS in the Singojuruh sub-district and the 

upstream Citarum watershed (Bachri et al., 2021; Siregar & Indrawan, 2017). The physical-

based approach is exact for flood prediction but requires many input data such as 

hydrological, topographic, morphological, and remote sensing data processed in GIS (Ji et al., 

2012). 

The empirical approach is categorized into three models, namely (1) multi-criteria 

analysis (Handini et al., 2021;Ajjur & Mogheir, 2020; Chakraborty & Mukhopadhyay, 2019; 

Dahri & Abida, 2017;Danumah et al., 2016; Kazakis et al., 2015); (2) statistical methods 

including bivariate and multivariate models (Costache, 2019; Ahmed M. Youssef et al., 

2016); (3) machine learning and Artificial Intelligence models (Costache et al., 2021; Eini et 

al., 2020; Shafizadeh-Moghadam et al., 2018). From 2000-2021, the most widely used 

approach among the three approaches is the empirical approach with about 46.2%, the 

Physical modeling approach of 43.8%, and the physical-based approach of 10% (Mudashiru 

et al., 2021). The multi-criteria analysis model using the Analytic Hierarchy Process (AHP) 

method as an empirical approach is the most widely used method (Mahmoud & Gan, 2018). 

The AHP method is a weighted evaluation process based on pairwise comparisons of each 

parameter which is then ranked and evaluated to choose the best solution for a problem 

(Saaty, 1990,  2004; Mudashiru et al., 2021). 

Multi-criteria analysis for flood analysis and mapping of flood-prone areas has been 

successfully applied with the help of GIS and remote sensing (Rahmati et al., 2016; Das, 

2018,  2020). It was further explained that combining the AHP method with GIS could be a 

reliable, efficient, accurate method and could be easily applied in other regions of the world 

(Danumah et al., 2016; Das, 2018; Chakraborty & Mukhopadhyay, 2019). On the other hand, 

the drawback of this AHP method is the selection of indicator weight values with based on 

expert opinion. The assessment has subjectivity and cognitive limitations (Pourghasemi et al., 

2014; Papaioannou et al., 2015). However, this weakness is reduced by assessing the 

consistency of the ratio, Satty (1980) determined that the threshold for the consistency of the 

ratio should be less than 10% to obtain a coherent value between the weighted variables. 
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Flood-prone areas mapping in various studies require various topographic parameters, 

hydrology, geomorphology, and climatology. Topography parameters were extracted from 

Digital Elevation (DEM), hydrology such as rainfall and river discharge, and geomorphology 

such as river flow networks, landforms, and land use. This data was obtained using remote 

sensing and processed in GIS (Wang et al., 2019; Arseni et al., 2020; Das, 2018, 2020). The 

parameters used in this study were slope, elevation, distance from the river, soil type, 

Topographic Wetness Index (TWI), and curvature. This study aims to assess flood hazard 

mapping by integrating the AHP method and Geographic Information System in Kencong 

District, Jember Regency, which is included in the downstream Tanggul watershed area. 

 

2. Study Area 

This research was carried out in the downstream Tanggul watershed, which is 

included in the administrative area of Kencong District. This area is located between 

coordinates 76147.105-757826.029 mS and 9081002.236-9085265.055 mT with an area of 

59.64km2. the western part of Jember Regency and directly adjacent to Lumajang Regency. 

Kencong District consists of five village: Kencong Village, Wonorejo Village, Kraton 

Village, Cakru Village, and Paseban Village (Figure 1). This area is downstream of the 

Tanggul watershed whose river empties into the Indian Ocean so that the altitude in the 

research area is between 0 to 31 meters. 

Geologically, Suwarti & Suharsono (1993) explained that most of the research area is 

included in the Argopuro Tuff Formation in the form of Interval tuff, tuff breccia, and 

tuffaceous sandstone. Argopuro Tuff formed in the Pleistocene Period, while in the southern 

part, it is included in the Alluvium formation in the form of Clay, mud, sand, gravel, gravel, 

and boulders. The southern part, which is close to the beach, is a coastal deposit formation in 

loose sand containing magnetite and formed in the Holocene Period as surface deposits. 

Climatically, based on observations of rainfall for ten years (2009-2019) from three 

observation stations, namely Pondok Waluh, Padingan, and Kencong rain stations, the 

rainfall in the study area ranged from 1663-1947 mm/year. The intensity of monthly rainfall 

increases from December to February. If the rainfall in the Tanggul watershed area reaches 

100 mm/day, the rivers passing through Paseban Village, Kraton Village, and Kencong 

Village will overflow and cause flooding (Haq et al., 2020). Land use in the research area is 

dominated by agricultural land in rice fields (48.46%) and plantations/gardens by 33.67%, 

while settlements are 8.82%. 
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Figure 1. The Study Area 

 

 

3. Methods 

The application of Geographic Information Systems and AHP for flood-prone areas 

mapping in the research area includes four stages: (1) Collection of the flood inventory 

mapping; (2) Determine the flood conditioning factors; (3) Analyzing flood-prone maps 

using the AHP method; and (4) Validation of results from flood-prone areas mapping. 

3.1. Collection of The Flood Inventory Mapping 

The inventory of flood locations in the research area comes from the National Disaster 

Management Agency (BNPB, 2019) regarding flood event records and field surveys. The 

limited data from BNPB related to the location of the incident includes the name of the 

village, needs to be reviewed by researchers utilizing field surveys and conducting interviews 

with the community due to the inventory map is an essential factor to see the opportunities 

and possible occurrences of disasters in the future (Tien Bui et al., 2012). The results from 

the inventory of flood locations will be used as validation of flood mapping results using 

AHP. 
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3.2. Determine The Flood Conditioning Factors 

The thematic variables used for mapping flood-prone areas in this study were 

extracted from satellite imagery data, Indonesian topographical maps, and secondary data 

from government web sources and government agencies. The Shuttle Radar Topographic 

Mission (SRTM) Digital Elevation Model (DEM) with a resolution of 30 m was downloaded 

from the USGS Website (earthexplorer.usgs.gov). The DEM data is processed in ArcGIS 

10.8 software to determine slope maps, elevation maps, Topographic Wetness Index (TWI) 

maps, and Curvature maps. The Indonesian Topographical Map is used to determine the 

administrative boundaries of the research area and river maps. Web sources are used to 

determine the type of soil that affects the drainage process. 

Slope: The slope has a dominant role in influencing water velocity, flood strength, and 

infiltration (Das, 2020). The slope is displayed in degrees and is classified into five 

categories: <2 degrees; 2-4 degrees; 4-6 degrees; 6-8 degrees; and >8 degrees. The smaller 

the degree of slope, the more vulnerable it is to flood disasters, so the value of the most 

significant weight is given. 

Elevation: Elevation affects the direction of flow and movement and the flood's 

inundation depth. The elevation is a factor that significantly influences the classification of 

potential flooding and is the highest compared to slope and land use (Kia et al., 2012; Ho & 

Umitsu, 2011). Furthermore, Ho & Umitsu (2011) stated that in areas with the same elevation 

and landform, flooding does not always coincide due to the slope of the terrain and the water 

level flood. The altitude of the place is divided into five classes: <10 m; 10-15 meters; 15-20 

m; 20-25m; and >25 m. 

Curvature: This parameter results from surface deviation from a flat plane. The 

method used in determining curvature is to apply a quadratic polynomial function to DEM 

data (Zhu, 2016). The curvature parameter is divided into concave, flat, and convex 

categories. The most influential factor prone to flooding is flat, followed by concave and 

convex. 

Topographic Wetness Index (TWI):This parameter is very suitable for predicting the 

level of surface soil saturation due to in water-saturated soil, the soil has the potential to 

create overland flow (Youssef & Hegab, 2019). Soulsby et al., (2010) also stated that TWI is 

a physical parameter of an area highly susceptible to flood inundation. The higher the TWI 

value, the more vulnerable it is to flooding, while the lower the TWI value, the lower the 

vulnerability (Das, 2018). TWI is processed directly from the SRTM DEM using ArcGIS 
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10.8. TWI parameters are categorized into three classes: TWI values >14; 9-14; and <9. TWI 

is calculated by Eq. 1. 

𝑇𝑊𝐼 = 𝑙𝑛
𝑎

𝑡𝑎𝑛𝛽
 (1) 

where TWI is the Topographic Wetness Index, a is the contribution of the upstream area (m2), 

and β is the slope angle  

The distance from the river: There is no agreement about how many critical distances 

have high flood hazards. The distance is different from one river to another. Small rivers can 

cause up to several meters from the riverbank, up to several kilometers in large rivers (Das, 

2020). Das (2018, 2019) stated that the distance of 500 meters was the most vulnerable to 

flooding, while Samanta et al. (2016); Rahmati et al., (2016); and Ajjur & Mogheir, (2020) 

mention 100 meters as the most vulnerable distance. The distance from the river in this study 

was analyzed by the Euclidian Distance method and categorized into five classes with 300-

meter intervals: <300 meters, 300-600 meters, 600-900 meters, 900-1200 meters, >1200 

meters. 

Soil type: Soil type maps are used to characterize permeability conditions and soil 

capacity to store and carry water (Hammami et al., 2019). The type of soil in the research 

location is divided into three categories: good drainage, medium drainage, and poor or 

impermeable drainage. 

 

3.3. Analytical Hierarchy Process (AHP) Model 

After all thematic maps were prepared and classified, the Analytical Hierarchy 

Process (AHP) model was applied to assign different weights to each parameter. AHP was 

developed by Saaty (1977). AHP is a structured model and can solve multi-factor problems, 

provide a numerical process for the consistency of the preferences, and evaluate ranking 

inconsistencies based on pairs (Satty, 1980; Fernández & Lutz, 2010). 

The application of the AHP method in this study consisted of two stages. The first 

stage is the primary classification for all parameters according to how vital each parameter is 

to the other parameters to calculate the weights. The second stage is to classify each 

parameter into subcategories. In two-stage processing, each factor will be assigned an 

arithmetic value between 1 - 9, depending on the significance of that factor to the other 

factors paired. Satty (1980) conveyed the arithmetical value of the importance of the scale, 

which contains different criteria and values (1. Equal importance; 3. Moderate importance; 5. 

Strongly importance; 7. Very strongly importance; 9. Extremely importance; 2, 4, 6, and 8 
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are intermediate values). An arithmetic value of 1 indicates that both factors are equally 

important. In contrast, an arithmetic value of 9 indicates that the factors in the row are very 

significant compared to the factors in the columns (Satty, 1980) 

The first stage of the AHP method in this study used pairwise comparison with a 6 x 6 

matrix (Table 1). After that, the value of pairwise comparison will be normalized to obtain a 

value used in the weighting of each parameter (Table 2). Consistency Ratio (CR) is used to 

evaluate pairwise ranking inconsistencies. CR compares Consistency Index and Random 

Consistency Index (RI) (Eq. 2). Subjective assessment is acceptable if the CR value is below 

or the same 0.10, but if the CR is higher than 0.10, the subjective assessment is inconsistent 

and needs to be reassessed to ensure realistic results (Saaty, 1990). 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (2) 

 

𝐶𝐼 =
𝜆 max − 𝑛

𝑛−1
 (3) 

 

Where CR is Consistency Ratio, CI is Consistency Index (Eq. 3), RI is Random Index, max 

represents the principal eigenvalue of the matrix, and n is the number of variables in the 

matrix. The calculation of the RI value is based on a paper from Saaty (1980). The value of 

RI depends on the number of factors; when the number of factors is six, then the value of RI 

is 1.24 based on (Satty, 1980). 

The second stage is to classify each parameter into subcategories and assign a weight 

to each class. The maximum and minimum values for each class vary from 1 to 5. 

Furthermore, from each class, the normalization is calculated to determine the weight of each 

class. The weight of each class is related to the impact of each class on the flood hazard. The 

slope, elevation, and distance factors from the river are divided into five classes, while the 

soil, TWI, and Curvature factors are divided into three classes. 

Furthermore, the weight values of all classes in each parameter are combined with the 

weight values of all factors to calculate the flood Hazard Index (Eq. 4). The overall weight 

value for each factor is calculated by multiplying each factor's weight by each class of the 

same factor. 

𝐹𝑙𝑜𝑜𝑑 𝐻𝑎𝑧𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 = ∑ 𝑋𝑖𝑗𝑛
𝑗−1 × 𝑌𝑗 (4) 

Where Xij is the weight of class i on variable j, Yj is the weight of variable j, and n is the 

number of variables. 
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3.4. Validation 

Validation and accuracy assessment of the analysis results of the multi-criteria 

analysis approach model, especially AHP, is one of the essential parts. Applying the Area 

Under Curve (AUC) based on flood event data in the field and historical records is a well-

established tool for validating the AHP model due to its simplified nature, completeness, and 

proper fit with predictions (Tehrany et al., 2013). A value of 1 for AUC indicates the 

maximum value accuracy without bias effect, whereas in general, an AUC value of more than 

0.8 is considered a very accurate and acceptable model. 

This study divided the flood susceptibility map using the AHP method into five 

classes. Flood inventory points resulting from observations and interviews are mapped in the 

form of X and Y axes, and the identification of the number of flood events for each class is 

compared to the flood-prone output map. The percentage of total flood events and the 

percentage of pixels for each class is determined based on these data. Based on the data, the 

area under the curve is identified numerically by the Eq. 5. 

𝐴𝑈𝐶 =  ∑
(𝑋1+𝑋2)

2(𝑌2−𝑌1)
𝑛=100
𝑓=1  (5) 

 

Where AUC indicates the area under the curve, X indicates the cumulative percentage of the 

area (from high to low vulnerability), Y indicates the cumulative percentage of flood events, 1 

and 2 indicate two consecutive data points, and n is the number of flood classes. 

 

4. Results and Discussion 

4.1. Factors That Influence Flood Hazard Mapping 

Floods occur due to several topographic and climatic factors in an area. The influence 

of each factors is undoubtedly different and will produce an overview of locations prone to 

various levels of flooding. In this study, six variables influence the occurrence of flooding, 

which will then be modeled using the Analytical Hierarchy Process (AHP). Each of these 

variables will be discussed in detail below: 

 

Slope 

A slope is a field angle or gradient measured from the level of elevation change at a 

location (Zhu, 2016). According to Chakraborty & Mukhopadhyay (2019), slope and 

elevation are considered disaster-forming factors because they have an essential role in 

turning flood hazards into disasters. Both are essential topographical factors (Das, 2018). 
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Slope in an area will affect flow velocity, runoff rate, and infiltration, so that it can have an 

impact on flooding (Rahmati et al., 2016; Zhu, 2016; Das, 2018). In areas with high slope 

gradients, the water flow will also move quickly so that the infiltration process is reduced. 

On the other hand, it will increase surface runoff; as a result, when the water flow is 

on a low or flat slope gradient, water will accumulate and stagnate. Slope variation in 

Kencong District is between 0° to 12°. The slope class with the most significant weight value 

in this study is 0°-2° which is prone to flooding. This class range is about 78.6% of the 

research area (Figure 2a). 

 

Elevation 

Elevation has a significant impact on the spread of floods, especially on the direction 

of flood movement and inundation depth (Rahmati et al., 2016; Hammami et al., 2019). The 

principle of water movement is from a high location to a lower location so that lower 

locations with flat slopes will have a greater level of flood vulnerability (Das & Pardeshi, 

2018). Elevation variations in Kencong District are between 0 to 31 meters. The elevation 

class with the most significant weight value in this study is <10 m with an area of about 74%, 

which is very prone to flooding (Figure 2b). 

 

Distance from the river 

When the river overflows, the area closest to the river is the area most affected by 

flooding (Fernández & Lutz, 2010). The river is the lowest point of an area. When the 

distance from the river is further away, the slope and elevation will also increase, and as a 

result, areas far from the river will have a low vulnerability to flooding events (Das, 2018). 

The distance from the river in several previous studies is the most significant variable in 

flood mapping, so it has the highest score weight compared to other variables (Rahmati et al., 

2016; Bathrellos et al., 2017; Ahmed M. Youssef & Hegab, 2019; Ajjur & Mogheir, 

2020;Olii et al., 2021; Handini et al., 2021). The results of the Euclidean Distance with an 

interval of 300 meters at the research site are shown in Figure 2c. The distance of 300 meters 

from a river in the study is most prone to flooding, and the area is about 24% of the total area. 

 

Soil type 

The type of soil in this study is to see the characteristics of saturation or soil 

saturation. Soil types at the research site were udipsamments, fluvaquentic endoaquepts, 

endoaquepts, and epiaquepts. These four soil types have different saturation levels, impacting 
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water drainage through the soil horizon layer. Based on the description from USDA (1999) 

Soil type: 

a. Udipsamments have soil characteristics that are not saturated with water in a layer up 

to a distance of 100 cm from the soil surface, even for 20-30 days in a row, because 

the size of the soil fraction is 0.02-2 mm. Udipsamments formed from the sand result 

from marine deposition processes, so this type of soil has good drainage. 

b. Fluvaquentic endoaquepts, the difference with other endoaquepts is that there is 

organic content at a depth of 125 cm. With aquic conditions only in the regular year, 

this type of soil has moderate drainage. 

c. Epiaquepts is a type of soil that has episaturation, in the sense that there are one or 

more layers that are saturated with water to a depth of 200 cm. The groundwater also 

fluctuates to that depth so that this soil type has moderate drainage. 

d. Endoaquepts are aquepts that have endosaturation, or saturated soil in all layers. 

Groundwater fluctuations from near the surface to a depth of 50 cm does not have a 

soil horizon to a depth of 100 cm, as a result of the shallow groundwater table, so that 

when saturated with the Flat surface land will cause flooding more quickly, so this 

type of soil has poor drainage. 

Therefore, the drainage conditions at the research site were divided into three 

categories: good drainage for udipsamment soil types, moderate drainage for fluvaquentic 

endoaquepts and epiaquepts soil types, and poor drainage for endoaquepts soil types. The 

highest weighting for flood susceptibility was endoaquepts which covered almost the entire 

study area, about 93.8% (Figure 2d). 

 

Topographic Wetness Index (TWI) 

TWI can describe the spatial distribution and areas with relatively wet and relatively 

dry proportions (Zhu, 2016). TWI also indicates the influence of flow direction and flow 

accumulation at a location in the watershed (Das, 2018). Based on the value criteria, the area 

with a high TWI value will be very prone to flooding. The TWI value is very prone to 

flooding, according to Das (2018, 2020), with a TWI value of >16, and Ahmed M. Youssef & 

Hegab (2019)with a TWI value of >14. The variation of the TWI value in this study is 

between 5 and 18. The TWI values that are very prone to flooding in this study are >14, 

spread out only about 2% of the research area. The low TWI value (<9) has the widest 

distribution, which is about 64% of the entire study area (Figure 2e). 
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Figure 2. Factors for flood hazard mapping: a. Slope; b. Elevation; c. Distance from the 

river; d. Soil Type; e. Topographic Wetness Index (TWI); f. Curvature 
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Curvature 

Curvature has a minor influence on flood events, although it cannot be ruled out (Das, 

2018). A positive curvature value indicates a convex surface (such as hills and ridges), a 

negative curvature value indicates a concave surface (such as depression and valley), and a 

value close to zero indicates flatness (Das, 2018; Zhu, 2016). The flat curvature is an area 

that is very prone to flooding, having the most expansive area, which is around 64.6% of the 

entire research area. The concave area is around 17.4%, and the convex area is around 17.6% 

of the research area (Figure 2f). 

 

4.2. Comparison and Weighting of Each Factor 

This study used the AHP Excel template and the AHP Extension in ArcGIS Software 

to compare and calculate the weights of each variable and the Consistency Ratio (CR). The 

results of the first stage of AHP calculations assess all factors' weights and comparisons using 

a 6 x 6 matrix, with diagonal elements equal to 1 (Table 1). Furthermore, the pairwise 

comparison value is normalized to obtain a weighted value (Table 2). The factors in the row 

matrix are compared to other factors in the column matrix. 

Floods in Kencong District occurred because many were caused by overflowing river 

water and broken river embankments so that most areas close to rivers were often affected by 

floods. Therefore, the distance from the river is the most influential factor compared to other 

factors. The distance from the river weighs 0.33 or 33%, with the most flood-prone class 

being the area within 300 meters of the river. The distance factor from the river as the most 

influential factor compared to other factors is also similar to previous studies, namely Olii et 

al. (2021) with a weight of 0.35; Ajjur & Mogheir (2020) with a weight of 0.38; Ahmed M. 

Youssef & Hegab (2019) with a weight of 0.335; Bathrellos et al. (2017) with a weight of 

0.30; and Rahmati et al. (2016) with a weight of 0.546. They all concluded that the areas 

most affected by flooding were areas close to rivers. 

Table 1. Comparison matrix and the relative score of all flood-related factors 

Factors Slope Elevation 
Distance from 

River 
Soil type TWI Curvature 

Slope 1 4 1/2 3 2 3 

Elevation 1/4 1 1/4 1/2 1/3 1/2 

Distance from River 2 4 1 4 3 2 

Soil type 1/3 2 1/4 1 1/3 1/2 

TWI 1/2 3 1/3 3 1 3 

Curvature 1/3 2 1/2 2 1/3 1 
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Table 2. Normalized and the weight values in the comparison matrix 

Factors Slope Elevation 
Distance 

from River 

Soil 

type 
TWI Curvature 

Weights 

(Wi) 

Weights 

(%) 

Slope 0.226 0.250 0.176 0.222 0.286 0.300 0.243 24.3 

Elevation 0.057 0.063 0.088 0.037 0.048 0.050 0.057 5.7 

Distance from River 0.453 0.250 0.353 0.296 0.429 0.200 0.330 33.0 

Soil type 0.075 0.125 0.088 0.074 0.048 0.050 0.077 7.7 

TWI 0.113 0.188 0.118 0.222 0.143 0.300 0.181 18.1 

Curvature 0.075 0.125 0.176 0.148 0.048 0.100 0.112 11.2 

 

 

The second factor that influences the occurrence of flooding is the slope with a weight 

of 0.24 or 24%, more significant than the weight of TWI, Curvature, Soil Type, and 

Elevation. The slope is a physical factor that forms a disaster whose influence is still below 

the main factor. Most of the slopes in the study area are between 2° to 4°, which are divided 

into two sub-categories of slope classes. Compared to other studies, slopes <6° are still the 

class most prone to flooding (Olii et al.2021; Das, 2018; Bathrellos et al.2017; Rahmati et 

al.2016). 

The result of the Consistency Ratio (CR) calculation is 0.047. CR value is still below 

the value of 0.10; The weighting is accepted and can be analyzed further for the sub-

categories of each factor. The contribution of each class in determining the flood hazard area 

is described in Table 3. The factors of slope, elevation and distance from the river are divided 

into five classes, while soil type, TWI, and Curvature are divided into three classes. Class 1 is 

the class that has the minor effect on flooding, and class 5 is the class that has the most 

influence on flood events.  

Based on the results of the weighting in this study, the elevation factor is the factor 

that has the most negligible effect on flooding due to the elevation in the study area is almost 

at an altitude below 20 m because it is in the downstream area and covers one sub-district. In 

contrast, in other studies covering areas ranging from upstream to downstream and regional 

scale (watershed), the elevation factor is considered to be very influential. Other studies 

categorize elevations <20 m as being in the most flood-prone area because of the regional 

scale of the research area (Hammami et al., 2019; Ajjur & Mogheir, 2020; Olii et al.2021). 
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Table 3. Classes of the factors and according weights 

Factors Class Rate 
Comparison Matrix Class 

Weight 

Factor 

Weight 

Area 

(km2) 

Area 

(%) 1 2 3 4 5 

Slope (°) <2° 5 1     0.416 0.243 46.87 78.65 

 2 – 4° 4 1/2 1    0.262  10.46 17.56 

 4 – 6° 3 1/3 1/2 1   0.161  1.83 3.07 

 6 – 8° 2 1/4 1/3 1/2 1  0.099  0.36 0.62 

 >8° 1 1/5 1/4 1/3 1/2 1 0.062  0.05 0.09 

            

Elevation  <10 5 1     0.416 0.057 28.11 47.15 

(m) 10-15 4 1/2 1    0.262  16.45 27.59 

 15-20 3 1/3 1/2 1   0.161  13.59 22.81 

 20-25 2 1/4 1/3 1/2 1  0.099  1.41 2.36 

 >25 1 1/5 1/4 1/3 1/2 1 0.062  0.03 0.06 

            

Distance  <300 m 5 1     0.443 0.330 28.40 16.91 

from river 
300-600 

m 
4 1/3 1    0.240  

20.69 12.32 

(m) 
600-900 

m 
3 1/3 1/2 1   0.159  

17.16 10.22 

 
900-1200 

m 
2 1/4 1/3 1/2 1  0.097  

13.98 8.33 

 >1200 m 1 1/5 1/4 1/3 1/2 1 0.061  19.74 11.75 

            

Soil Type Poor drain  3 1     0.633 0.077 56.01 93.85 

 
Semi 

drain 
2 1/3 1    0.260  

1.42 2.37 

 Well drain 1 1/5 1/3 1   0.106  2.26 3.78 

            

TWI >14 3 1     0.633 0.181 1.,21 2.07 

 9-14 2 1/3 1    0.260  19.43 33.30 

 <9 1 1/5 1/3 1   0.106  37.70 64.63 

            

Curvature Flat 3 1     0.599 0.112 38.56 64.69 

 Concave 2 1/3 1    0.269  10.43 17.49 

 Convex 1 1/4 1/3 1   0.131  10.62 17.81 

 

4.3. Flood Susceptibility Analysis Results 

The value of the weight of each class and weight variables from the AHP model is 

then included in the Weighted Overlay analysis in ArcGIS according to the classes described 

in Table 3. The flood hazard map resulting from the weighting of the six variables is shown 

in Figure 3. Flood hazard is divided into five levels: deficient, low, medium, high, and very 

high with an area of 0.02% each; 4.26%; 37.11%; 51.89%, and 6.72%. The location of the 

occurrence of flooding observations based on incident records and interviews was found as 

many as 121 locations, of which there were 14 observation sites in moderately vulnerable 

areas, 81 observation locations in high-prone areas, and 26 observation locations in very high 

flood-prone areas (Table 4). Most flood locations are found in high flood-prone areas because 

they cover an area of 30.19 km2 or equivalent to 50.89% of the total research area. In areas 

with a very high level of flood susceptibility, 26 locations were also found, although the area 
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was only 3.91 km2 or 6.72%. In contrast, in areas with a deficient and low level of flood 

susceptibility with an area of 4.28%, there were no locations where there had been a flood. 

Table 4. Areas according to the level of flood susceptibility and flood observation locations 

Flood Hazard Classes Area (km2) Area (%) Inventory Flood Mapping 

Very Low 0.013 0.02 - 

Low 2.477 4.26 - 

Medium 21.598 37.11 14 

High 30.196 51.89 81 

Very High 3.911 6.72 26 

Total 58.195 100.00 121 

 

Areas with a very high level of flood vulnerability are in the middle part of Kraton 

Village (2.45%) and the southern part of Kencong Village (2.37%). These two villages have 

experienced seven broken embankments since 1994. The river embankment that broke on 

December 22, 2018, was the left-hand defence of the Tanggul River which then resulted in 

flooding in the southern part of Kencong Village and Kraton Village. Very high vulnerability 

areas are close to rivers, flat slopes <2°, low elevation, poor soil drainage, and the density of 

drainage between the Kedongpawon River, Tanggul River, and Meneng River at this location 

is very tight. The density of dense river drainage is one factor that encourages flood 

inundation (Danumah et al., 2016; Dahri & Abida, 2017; Seejata et al., 2018). In addition, 

regarding the broken embankment, a very high flood-prone area is also located at the 

confluence of the Paseban River and the Kedungpowon River. Chakraborty & 

Mukhopadhyay (2019) stated that the proximity of an area to the confluence of two rivers and 

a broken embankment significantly influences flood vulnerability. According to the flood 

susceptibility class, the area of the village is described in Table 5. 

     Table 5. The area of the village, according to the level of flood susceptibility 

Village 

Hazard Classes 
Total 

(km2) 
Very Low Low Medium High Very High 

Km2 % Km2 % Km2 % Km2 % Km2 % 

Cakru 
  

0.51 0.87 3.57 6.14 3.67 6.31 0.38 0.66 22.11 

Kencong 
  

0.48 0.83 5.70 9.80 9.91 17.02 1.38 2.37 45.11 

Kraton 
  

0.04 0.07 1.03 1.77 5.55 9.54 1.42 2.45 19.44 

Paseban 0.013 0.02 0.86 1.48 5.05 8.68 4.98 8.56 0.31 0.53 29.96 

Wonorejo 
  

0.58 1.00 6.24 10.72 6.08 10.45 0.42 0.72 35.50 

Total 0.013 
 

2.48 
 

21.60 
 

30.20 
 

3.91 
 

58.20 

 

Areas with high flood susceptibility have 51.89% of the research area. High flood 

levels were spread across all villages, such as in Kencong Village (17.02%), Wonorejo 

Village (10.45%), and Kraton Village (9.54%). The dominant high flood-prone class is within 

300-500 meters of the river, namely the Tanggul River, Malang River, Meneng River, 
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Kedungpowon River, and Bondoyudo River. The flood caused by the embankment breaks, all 

areas categorized as high flood-prone will also be inundated. The slopes in Kencong District 

are dominantly in the flat category with slopes of 0°-4°, low elevation, and poor drainage, 

which makes some areas fall into the category of high-level flooding. 

Areas that have a moderate level of flood vulnerability are Wonorejo Village 

(10.72%), Kencong Village (9.80%), and Paseban Village (8.68%). The condition of the area 

included in the moderate flood area is usually caused by the movement of water through the 

basin and basin to lead to a flat place even though it is far from the river. They are randomly 

distributed in the low- and very-low class flood areas. The area is far from rivers, has good 

soil drainage, and has curvature in hills or dunes. The distribution of all flood-prone classes is 

shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flood susceptibility map 
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4.4. Model Validation 

The accuracy of the flood vulnerability modeling results can be validated 

quantitatively using the Receiver Operating Characteristic (ROC) curve to compare the 

accuracy of the vulnerability map with data on the location of flood events in the field 

(Youssef & Hegab, 2019; Shafizadeh-Moghadam et al., 2018; Tien Bui et al., 2012). In 

general, the prediction level shows the model's predictive ability in a particular area by 

measuring the area under the prediction level curve (Area Under Curve) called the AUC 

Value (Pourghasemi et al., 2012). 

In this study, the validation of the flood-prone map was carried out through field 

observations at locations that had been flooded and found 121 locations of flood events in the 

Kencong District area. The AUC value shows a value of 0.838 which means that about 84% 

of the area is below the prediction according to the AHP flood mapping method results 

(Figure 4). The range of values to indicate the predicted result class is 90-100% (Special); 80-

90% (Very Good); 70-80% (Good); 60-70% (Enough); and 50-60% (low) (James et al., 2013; 

Zumel & Mount, 2014). The AUC value shows that the AHP method has excellent predictive 

ability (84%) in mapping flood-prone areas in Kencong District. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Area Under Curve (AUC) for Flood Susceptibility Map 

 

5. Conclusion 

The AHP method, integrated with the Geographic Information System, can produce a 

model to evaluate the spatial distribution of flood-prone areas in the Kencong District, 

Jember Regency. Spatial distribution using weighting on the variables of a slope, elevation, 
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soil type, distance from the river, topographic wetness index (TWI), and curvature have been 

divided into five levels: deficient, low, medium, high, and very high with an area of 0.02% 

each; 4.26%; 37.11%; 51.89%, and 6.72%. Areas closed to the rivers within a radius of <300 

meters, and 300-600 meters are high vulnerable to the flood, because the distance variable 

has the highest weight, which is about 33% compared to other variables. The farther the 

distance from the river, the lower the potential for the area flooded. The validation value of 

this model with observations in the field was 83.8%, indicating  a excellent predictive ability. 
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