Analisis Efisiensi Kinerja Motor BLDC Menggunakan Metode Kontrol Sliding Mode Observer PI

  • Adi Mulyadi Universitas PGRI Banyuwangi
  • Muhammad Zainal Rois Universitas PGRI Banyuwangi
  • Bambang Sri Kaloko Universitas Jember
  • Riska Fita Lestari Universitas PGRI Banyuwangi
  • R. B. Moch. Gozali Universitas Jember
  • Suprihadi Prasetyono Universitas Jember

Abstract

Brushless DC (BLDC) motors are widely used and applied in industry but it is difficult to control BLDC motors. Basically, a Brusless DC (BLDC) motor or also known as a permanent magnet synchronous motor (PMSM) uses a hall sensor to determine the position and speed of the motor. The data on the value of the BLDC rotor speed (rpm) in the basic modeling of the BLDC motor as input from the sliding mode observer (SMO) method which is set in the BLDC rotor speed (rpm) set point. A sensorless method based on SMO is proposed to replace the hall-sensor device for estimating the rotor position and speed of BLDC motors. This study compares the value between the rotor speed (rpm) of BLDC without control and the rotor speed (rpm) of BLDC with control. PI control is one that determines the rotor speed efficiency of the BLDC. The most optimal value of Rotor Rotation Efficiency (rpm) using PI Control is at the rotor rotation speed of 2000 rpm and 2500 rpm or 100%. The value of Rotor Rotation efficiency (rpm) is greater, namely 100% or 2000 rpm from the 2000 rpm rotation speed set point for BLDC motor modeling using PI control when compared to BLDC motor modeling without PI control, namely 91.65% or 1833 rmp value from set point rotation speed 2500 rpm.

References

[1] R. Hazari and E. Jahan, “Design of a Brushless Dc Motor for Missile Applications,” in International conference on Electrical Engineering and Information & Communucation Technology(ICEEICT), 2014, pp. 0–5.
[2] T. and S. N. Kenjo, Permanent-Magnet and Brushless DC Motors. United States of America: Clarendon Press. Oxford, 1985.
[3] S. Mondal, A. Nandi, I. Mallick, C. Ghosh, and A. Giri, “Performance evaluation of brushless DC motor drive for three different types of MOSFET based DC-DC converters,” in Proceedings of 2nd International Conference on 2017 Devices for Integrated Circuit, DevIC 2017, 2017, pp. 589–593.
[4] A. Jaya, E. Purwanto, M. B. Fauziah, F. D. Murdianto, G. Prabowo, and M. R. Rusli, “Design of PID-fuzzy for speed control of brushless DC motor in dynamic electric vehicle to improve steady-state performance,” in Proceedings IES-ETA 2017 - International Electronics Symposium on Engineering Technology and Applications, 2017, vol. 2017-Decem, pp. 179–184.
[5] J. K. Mandal, S. C. Satapathy, M. K. Sanyal, and V. Bhateja, “A New Implementation Scheme in Robotic Vehicle Propulsion Using Brushless DC Motor,” in Advances in Intelligent Systems and Computing, 2017, vol. 458, pp. 387–394.
[6] D. Akbar and S. Riyadi, “Pengaturan Kecepatan Motor Brushless DC (BLDC) Menggunakan PWM (Pulse Width Modulation),” in Seminar Nasional Instrumentasi Kontrol dan Otomasi (SNIKO) 2018, 2018, pp. 2–2.
[7] P. Suganthi, S. Nagapavitha, and S. Umamaheswari, “Modeling and Simulation of Closed Loop Speed Control for BLDC Motor,” in IEEE Conference on Emerging Devices and Smart Systems (ICEDSS 2017), 2012, no. March, pp. 83–126.
[8] M. Topal, I. Iskender, and N. Genc, “Sensorless Speed Control of a BLDC Motor Using Improved Sliding Mode Observer Technique,” Int. J. Tech. Phys. Probl. Eng., vol. 11, no. 1, pp. 1–9, 2019.
[9] T. Anitha, G. Gopu, M. Nagarajapandian, and P. A. M. Devan, “Hybrid Fuzzy PID Controller for Pressure Process Control Application,” in 2019 IEEE Student Conference on Research and Development, SCOReD 2019, 2019, pp. 129–133.
[10] P. I. T. Chang, X. Y. Lin, and I. J. Yu, “Sensorless BLDC Motor Sliding Mode Controller Design for Interference Recovery,” 2019 6th Int. Conf. Control. Decis. Inf. Technol. CoDIT 2019, pp. 1780–1785, 2019.
[11] S. Geraee, M. Shafiei, A. R. Sahami, and S. Alavi, “Position sensorless and adaptive speed design for controlling brushless DC motor drives,” 2017 North Am. Power Symp. NAPS 2017, 2017.
[12] M. S. Zaky, M. K. Metwaly, H. Z. Azazi, and S. A. Deraz, “A New Adaptive SMO for Speed Estimation of Sensorless Induction Motor Drives at Zero and Very Low Frequencies,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 6901–6911, 2018.
[13] B. N. Kommula and V. R. Kota, “Performance Evaluation of Hybrid Fuzzy PI Speed Controller for Brushless DC Motor for Electric Vehicle Application,” in 2015 Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth, PCCCTSG 2015, 2016, no. 1, pp. 266–270.
[14] Jatmiko, A. Basith, A. Ulinuha, M. A. Muhlasin, and I. Shokhibul Khak, “Analisis Performa dan Konsumsi Daya Motor BLDC 350 W pada Prototipe Mobil Listrik Ababil,” Emit. J. Tek. Elektro, vol. 18, no. 02, pp. 55–58, 2018.
[15] N. I. Suendri, S. Hani, and D. S. Priyambodo, “Analisis Performa Brushless Motor Dc Pada Mobil Listrik Molista,” J. Elektr., vol. 5, no. 1, pp. 18–26, 2018.
[16] M. B. Dwifa and Munadi, “Pengujian Efisiensi Energi Motor BLDC 72 Volt – 7kW untuk Aplikasi Model Electric Urban Car,” in Prosiding Seminar Nasional ReTII ke-10 2015, 2017, pp. 2–7.
[17] M. H. As-Salaf and Syahrial, “Simulasi Pengaturan Kecepatan Motor BLDC Menggunakan Software PSIM,” J. Multimed. Artif. Intell. Netw. Database, vol. 6, no. 1, pp. 103–117, 2021.
[18] M. Fikri, M. Fordry Okta, and A. Bagus, “Analisis Perbandingan Performa Golden Motor Magic Pie 5 dan Mitsuba M1048R Sebagai Penggerak Kendaraan Listrik,” J. Rekayasa Mesin, vol. 6, no. 3, pp. 147–151, 2015.
[19] D. G. Ramdhany, N. Hiron, and N. Busaeri, “Modifikasi Motor Brushless Dc Menjadi Generator Sinkron Magnet Permanen Fluks Radial Putaran Rendah,” J. Energy Electr. Eng., vol. 3, no. 1, pp. 27–33, 2021.
[20] A. Nurmalia, W. Hadi, and W. Cahyadi, “Performance Test of Three-Phase Brushless Direct Current Motor Axial Flux with Differences Diameter of Neodymium Type Permanent Magnet,” Elkha, vol. 13, no. 1, p. 55, 2021.
[21] M. A. Izzati and N. Gusnita, “Analisis Performa dan Daya Konsumsi Brushless Direct Current,” Briliant J. Ris. dan Konseptual, vol. 7, no. November, pp. 1104–1115, 2022.
[22] D. Liang, J. Li, and R. Qu, “Sensorless Control of Permanent Magnet Synchronous Machine Based on Second-Order Sliding-Mode Observer With Online Resistance Estimation,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3672–3682, 2017.
[23] K. Venkateswari, “A sensor less BLDC motor drive using sliding mode observer for electric vehicle,” Malaya J. Mat., vol. 119, no. 2, pp. 3544–3548, 2020.
[24] M. Poovizhi, M. Senthil Kumaran, P. Ragul, L. Irene Priyadarshini, and R. Logambal, “Investigation of mathematical modelling of brushless dc motor(BLDC) drives by using MATLAB-SIMULINK,” Int. Conf. Power Embed. Drive Control. ICPEDC 2017, pp. 178–183, 2017.
[25] S. Liu, Z. Qiu, and W. Chen, “Sensorless Control with Sliding Mode Observer for a Brushless DC Motor based on Concave Function,” Proc. 2019 IEEE 3rd Adv. Inf. Manag. Commun. Electron. Autom. Control Conf. IMCEC 2019, no. Imcec, pp. 872–876, 2019.
[26] I. N. Syamsiana and M. Wang, “A Study of Sliding Mode Observer Sensorless of Brushless Motor using Embedded Coder Matlab/Simulink,” in ICEEIE 2019 - International Conference on Electrical, Electronics and Information Engineering: Emerging Innovative Technology for Sustainable Future, 2019, no. 1, pp. 1–6.
[27] N. Jin, X. Wang, and X. Wu, “Current sliding mode control with a load sliding mode observer for permanent magnet synchronous machines,” J. Power Electron., vol. 14, no. 1, pp. 105–114, 2014.
[28] A. Ramadhan and M. T. Tamam, “Perancangan Permanent Magnet Synchronous Generator Kapasitas 22 KVA Menggunakan Metode Finite Element Method,” J. Ris. Rekayasa Elektro, vol. 3, no. 2, pp. 83–90, 2021.
[29] M. N. Kholis, “Rancangan permanent magnet synchronous generator (pmsg) 12 slot 8 pole dengan menggunakan software magnet infolytica 7.5,” pp. 5–19, 2020.
[30] A. Islam, N. Ternate, and B. Android, “Analisis Perbandingan Bahan Material Magnet Dalam Pemodelan Permanent Magnet Synchronous Generator (PMSG) 12 Slot 8 Kutub Dengan Menggunakan Finite Elemen Method (FEM) Software,” pp. 1–10, 2019.
Published
2022-12-13
How to Cite
MULYADI, Adi et al. Analisis Efisiensi Kinerja Motor BLDC Menggunakan Metode Kontrol Sliding Mode Observer PI. Jurnal Arus Elektro Indonesia, [S.l.], v. 8, n. 3, p. 86-91, dec. 2022. ISSN 2443-2318. Available at: <https://jurnal.unej.ac.id/index.php/E-JAEI/article/view/34998>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.19184/jaei.v8i3.34998.
Section
Articles