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Abstract. This study deals with the analysis and the solution of incubation period in a disease model by 
adopting the mathematical model with incubation period of diseases and the mathematical model without 
the incubation period of diseases. In the model equations, we partitioned the population into Susceptible 
(S), Incubated (I), Infected (D) population. We have compared the model equations without incubation 
period with the model equation with incubation period by solving and incorporating the system of first order 
linear equations into fourth order Runge-kutta method which has better error accuracy for solving first order 
equations. Graphical results for incubation class show that the infectious diseases were fatal if immediate 
attention is not given to endemic villages and communities. 
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Introduction 

Most fundamental laws of science and engineering are based on models that explain variation in 
physical properties described by differential equations. The mathematical study of epidemics has 
come up with an astonishing number of mathematical models with explanations for spread and 
causes of epidemic outbreaks [1]. It is a well-established fact that the order of magnitude of deaths 
due to socio-economic diseases are more than anything else in the world. In recent years, several 
studies have come up, which have not only explained various diseases due to socio-economic 
aspect but gained triumphs for developing medicine [1], [2]. 

Disease can be infectious and non-infectious. An infectious disease can be transmitted from one 
person to another (COVID-19, SARS, Ebola and tuberculosis etc.), while a non-infectious disease 
cannot be spread through person-to-person contact (cancer, Alzheimer’s disease and epilepsy 
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etc.) [3]. An infectious disease can be defined as an illness due to a pathogen or its toxic product, 
which arises through transmission from an infected person, an infected animal, or a contaminated 
inanimate object to a susceptible host [4]. Infectious diseases are responsible for an immense 
global burden of disease that impacts public health systems and economies worldwide, 
disproportionately affecting vulnerable populations [5]. Therefore, the incubation period is defined 
as the time from exposure to onset of disease [1], and when limited to infectious diseases, 
corresponds to the time from infection with a microorganism to symptom development. 

The incubation period of infectious diseases ranges from the order of a few hours, which is 
common for toxic food poisoning, to a few decades as seen in the case of tuberculosis, AIDS and 
variant Creutzfeldt-Jakob disease (vCJD) [6]. Since symptom onset reflects pathogen growth and 
invasion, excretion of toxins and initiation of host-defense mechanisms, the length of the 
incubation period varies largely according to the replication rate of the pathogen, the mechanism 
of disease development, the route of infection and other underlying factors [7]. During the 
incubation period of acute infectious diseases, which is subsequently followed by a symptomatic 
period, it should be noted that the infected host can be infectious [1]. Whereas the incubation and 
symptomatic periods are distinguished by symptom onset, other epidemiologic terms are 
distinguished by acquisition of infectiousness [1]. That is, the time from infection to acquisition of 
infectiousness is referred to as the latent period, which is subsequently followed by the infectious 
period [8]. These two concepts are clearly separated by definition and are not directly related. 
The incubation period of infectious diseases offers various insights into clinical and public health 
practices, as well as being important for epidemiologic and ecological studies. 

This research studied numerically a mathematical model with incubation period and a 
mathematical model without incubation period by adopting model with incubation period and 
model without incubation period developed by [1] and latter modified by [2].  

Theoretical Background 

Incubation period in a disease model can be traced back to the mid-16th century when Girolamo 
Fracastoro (Fracastorius) (1478–1553), an Italian physician, documented for the first time the 
incubation period of rabies in 1546 [3]. Recently, [6], [7], noted that incubation period is frequently 
used to determine the infecting exposure in foodborne outbreaks and can assist in diagnosis when 
laboratory resources are unavailable. Criteria were developed and are frequently employed to 
determine whether an outbreak was caused by norovirus; the incubation period is one of the key 
elements of these criteria [4]. Also, [8] noted that incubation period is important for accurate 
surveillance for healthcare associated infections and implementation of effective outbreak control 
measures (e.g., quarantine and isolation). A summary of the incubation periods for various 
contagious diseases can be found in Table 1. This table highlights the time frame between 
exposure to the pathogen and the onset of symptoms for different diseases. 

Materials and Methods 

In epidemiology, the population can be classified into two broad classes viz: Susceptible and 
infected class. The susceptible populations are prone to infection and infected population can 
transmit the infection to the susceptible ones [1]. Figure 1 presents a flow diagram illustrating the 
model with an incubation phase. This diagram outlines the stages and processes involved, 
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highlighting the incubation period as a key component of the model's progression. The following 
models are taken from [1]. 

Table 1. Summary of the incubation period of some contagious/communicable diseases 

S/N Diseases Incubation Period 

i Cellulitis caused by Pasteurella multicide 0 & 1 days, [9]. 

ii Chicken pox 9 & 12 days, [10]. 

iii Dengue fever 3 & 14 days, [11]. 

iv Cholera 0.5 & 4.5 days, [12]. 

v Erythema infectious 13 & 18 days, [13]. 

vi Ebola 1 & 21 days, [14]. 

vii Rosela 5 & 15 days, [15]. 

viii HIV 2 & 3 weeks to months or longer, [16]. 

ix Infectious Mononucleosis (glandular fever) 28 & 42 days, [17]. 

x Kuru disease 10.3 & 13.2 years (mean), [18]. 

xi Marburg 5 & 10 days, [19]. 

xii Measles 9 & 12 days, [20]. 

xiii Mumps 14 & 18 days, [21]. 

xiv Covid-19 2 to 14 days , [22]. 

 

Model Parameters 

S(t) = Susceptible population at time t 

I(t) = Incubating population at time t 

D(t) = Infected population at time t 

N(t) = Total population at time t 

𝛾 = Instrinsic growth rate 

b = The disease contact rate 

k = Carrying capacity 

𝛿1𝛿2 = The rate of removable population from disease contact rate including death 

due to disease and natural causes 

𝜂 = Fraction of infected population that will rejoin in susceptible class 

𝛽1 = The fraction of incubated class that will go to the disease class 

𝛽 = The rate of removable population from incubated class 

𝛼 = Disease contact rate 
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Figure 1. Flow Diagram of the Model with Incubation 

 
Assumption of the Model 

The assumptions of the model are as follows: 
(i) The population is fixed 
(ii) The only way a person can leave the susceptible group is to become incubated. The only 

way a person can leave incubated class is to become infected. The only way a person can 
leave infected class is to rejoin the susceptible class. 

(iii) We also assume that there is no vertical transmission of the disease. 
(iv) Age, sex, social status and race does not affect the probability of being infected. 
(v) There is no inherited immunity within the system. 
(vi) The members of the population mix homogenously (having the same interaction with one 

another at the same time). 
 

The dotted line indicates some of the incubated class 𝛽1 that will be rejoining the disease class. 

As 𝜂 dotted line indicates some of the infected members that may later rejoin the susceptible class 
only. 
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The Model Equations with Incubation 

The equation for the susceptible class at time 𝑡 is  

𝑆′(𝑡) = 𝑟𝑠 (1 −
𝑠

𝑘
) − 𝛼𝑆𝐷 + 𝜂𝐷 (1) 

The equation for the incubated class at time 𝑡 is  

𝐼(𝑡) =  𝛼𝑆𝐷 −  𝛽𝐼 (2) 

The equation for the infected class at time 𝑡 is  

𝐷′(𝑡) =  𝛽1𝐼 − 𝛿2𝐷 (3) 

The equation for population size at time 𝑡 is  

𝑁(𝑡) = 𝑆 (𝑡) + 𝐼(𝑡) + 𝐷(𝑡) (4) 

 
 
The Model Equations without Incubation 

The equation for the susceptible class at time 𝑡 is 

𝑆′(𝑡) = 𝑟𝑠 (1 −
𝑠

𝑘
) − 𝑏𝑆𝐷 + 𝜂𝐷 (5) 

The equation for the infected class at time 𝑡 is  

𝐷′(𝑡) =  𝑏𝑆𝐷 − 𝛿𝐷 (6) 

 
 
The Runge-Kutta Method of Order 4 

Consider the system of autonomous ordinary differential equations 

𝑑𝑥1
𝑑𝑡

= 𝑓1(𝑥1, 𝑥2, … 𝑥𝑛) 

𝑑𝑥2
𝑑𝑡

= 𝑓1(𝑥1, 𝑥2, … 𝑥𝑛) 

𝑑𝑥𝑛
𝑑𝑡

= 𝑓𝑛(𝑥1, 𝑥2, … 𝑥𝑛) 

 

 

(7) 

Which can simply be expressed as  

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) 

(8) 

If (8) is a one-dimensional problem, we can state the fourth order Runge Kutta method for the 
numerical solution of (8) as follows; 
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𝑦𝑖+1 = 𝑦𝑖 +
1

6
 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ℎ (9) 

where  

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖) 

𝑘2 = 𝑓 (𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘1ℎ) 

𝑘3 = 𝑓 (𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘2ℎ) 

𝑘4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘3ℎ) 

 

However, we expressed (1-3) as a system of 3×3-dimensional vector equations gotten from 
mathematics model with incubation and (1-2) as a system of 2×2-dimensional vector equations 
gotten from model without incubation period for 𝑡 ≥ 0.  Following [23], [24] and the reference there 
in, we can approximate these vectors as follows; 

Runge-kutta method of order 4 for a 3x3 system of ordinary differential equations of model with 
incubation. 

(
𝑘1𝑠
𝑘1𝐼
𝑘1𝐷

) = ℎ (

𝑓 (𝑡𝑖 , 𝑆)
𝑓 (𝑡𝑖, 𝐼)
𝑓 (𝑡𝑖 , 𝐷)

) 

(
𝑘2𝑠
𝑘2𝐼
𝑘2𝐷

) = ℎ 

(

 
 
 
𝑓 (𝑡𝑖 +

1
2⁄ , 𝑆𝑖 +

𝑘1
2
)

𝑓 (𝑡𝑖 +
1
2⁄ , 𝐼𝑖 +

𝑘1
2
)

𝑓 (𝑡𝑖 +
1
2⁄ , 𝐷𝑖 +

𝑘1
2
))

 
 
 

 

(

𝑘3𝑠
𝑘3𝐼
𝑘3𝐷

) = ℎ 

(

 
 
 
𝑓 (𝑡𝑖 +

1
2⁄ , 𝑆𝑖 +

𝑘2
2
)

𝑓 (𝑡𝑖 +
1
2⁄ , 𝐼𝑖 +

𝑘2
2
)

𝑓 (𝑡𝑖 +
1
2⁄ , 𝐷𝑖 +

𝑘2
2
))

 
 
 

 

(
𝑘4𝑠
𝑘4𝐼
𝑘4𝐷

) = ℎ (

𝑓 (𝑡𝑖 + 1, 𝑆𝑖 + 𝑘3)
𝑓 (𝑡𝑖 + 1, 𝐼𝑖 + 𝑘3)
𝑓 (𝑡𝑖 + 1,𝐷𝑖 + 𝑘3)

) 

(

𝑆𝑖 + 1
𝐼𝑖 + 1
𝐷𝑖 + 1

) = (

𝑆𝑖
𝐼𝑖
𝐷𝑖

) + 1 6⁄ [(

𝑘1𝑆
𝑘1𝐼
𝑘1𝐷

)+ 2(

𝑘2𝑆
𝑘2𝐼
𝑘2𝐷

)+ 2(

𝑘3𝑆
𝑘3𝐼
𝑘3𝐷

)+ (

𝑘4𝑆
𝑘4𝐼
𝑘4𝐷

)] (10) 
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Runge–kutta method of order 4 for a 2x2 system of ordinary differential equations of model 
without incubation 

( 
𝑘1𝑠
𝑘1𝐷

) = ℎ ( 
𝑓 (𝑡𝑖, 𝑆)
𝑓 (𝑡𝑖, 𝐷)

) 

( 
𝑘2𝑠
𝑘2𝐷

) = ℎ (
𝑓 (𝑡𝑖 +

1
2⁄ , 𝑆𝑖 +

𝑘1
2
)

𝑓 (𝑡𝑖 +
1
2⁄ , 𝐷𝑖 +

𝑘1
2
)

) 

( 
𝑘3𝑠
𝑘3𝐷

) = ℎ (
𝑓 (𝑡𝑖 +

1
2⁄ , 𝑆𝑖 +

𝑘2
2
)

𝑓 (𝑡𝑖 +
1
2⁄ , 𝐷𝑖 +

𝑘2
2
)

) 

( 
𝑘4𝑠
𝑘4𝐷

) = ℎ (
𝑓 (𝑡𝑖 + 1, 𝑆𝑖 + 𝑘3)
𝑓 (𝑡𝑖 + 1,𝐷𝑖 + 𝑘3)

) 

( 
𝑆𝑖 + 1
𝐷𝑖 + 1

) = (
𝑆𝑖
𝐷𝑖
) + 1 6⁄ [(

𝑘1𝑆
𝑘1𝐷

) + 2((
𝑘2𝑆
𝑘2𝐷

)) + 2(
𝑘3𝑆
𝑘3𝐷

) + (
𝑘4𝑆
𝑘4𝐷

)] (11) 

We therefore write a computer program in MATLAB to carry out numerical experiment of equation 
(10) and equation (11) using ode45 command for the numerical simulations. 

Numerical results  

Table 2. Parameters of the model without incubation 

S/N Parameters Value 

1 𝛼 0.72 

2 𝛽1 0.01 

3 𝛽 0.50 

4 𝑏 0.50 

5 𝑟 0.8 

6 𝑘 100 

7 𝜂 0.1 

8 𝛿 0.20 

9 𝑆(0) 6 

10 𝐷(0) 3 
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Table 3. Parameters of model with incubation 

S/N Parameters Value 

1 𝛼 0.72 

2 𝛽1 0.01 

3 𝛽 0.50 

4 𝑏 0.50 

5 𝑟 0.8 

6 𝑘 100 

7 𝜂 0.1 

8 𝛿 0.5 

9 𝑆(0) 6 

10 𝐼(0) 2 

11 𝐷(0) 3 

 

We carried out some numerical experiments by assigning specific values to the parameters 𝛼, 𝛽1,
𝛽, 𝑅, 𝑘, 𝜂, 𝛿 as defined in the model equation as well as the initial values to S (0), I (0), D (0) 
and N (0) as presented in Table 2 and Table 3. The initial values assigned to Table 2 are 
parameter of model without incubation and that of Table 3 are the parameters of model with 
incubation. 

Results and Discussion 

The curve in Figure 2 exhibited a short and sharp rise at the initial stage which followed a 
temporally decline and a continuous rise.  When observed critically it was discovered that, at the 
initial time 𝑡0, a susceptible individual got contracted with two bacterial approximately.  
Immediately the bacteria began to multiply to produce five members as the time of exposure 
increased to day one (𝑡1) in the body of the exposed individual. However, the body immune 
system began to fight the bacteria naturally and three members of the bacteria died off on day 
two to the eighth day (𝑡2 − 𝑡8), which caused the sharp decline of the curve. But on the tenth day 
(𝑡10), the graph exhibited a continuous rise which showed that the bacteria were able to defeat 
the body’s natural immune system and then, the pathogens continued to multiply in the body of 
the exposed individual exponentially. At this point the susceptible individual began to experience 
unusual body functions such as headaches, neck ache, stomach aches et cetera; measles and 
chicken pox have this kind of incubation period. In view of the above, serious measures should 
be put in place in endemic villages by the health workers and the government to help reduce and 
to curb the spread of such contagious diseases in the affected communities. 

This pattern of infection highlights the dynamic interaction between the pathogen and the host's 
immune response. The initial rise in bacterial population underscores the rapid multiplication of 
the pathogen during the early stages of exposure. However, the subsequent decline reflects the 
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body's natural defense mechanisms attempting to control and eliminate the infection. Despite this 
temporary success, the eventual rise in bacterial levels demonstrates the pathogen's ability to 
overcome immune defenses, leading to the full onset of symptoms. This pattern of incubation and 
immune response is crucial in understanding the progression of contagious diseases like measles 
and chickenpox. The observed trends emphasize the importance of early intervention, as prompt 
medical and public health measures could help mitigate the pathogen's spread during the critical 
phases of its incubation and multiplication. 

 

 

Figure 2. Graph of Incubated population versus time 

Figure 3 compared the infected (disease) class with incubation and the infected (disease) class 
without incubation. In the infected class without incubation compartment, the increase in the 
infected members were fast and rapid on day one and day 2 as the disease spread from the three 
members of the population that were initially exposed to the infectious disease to infecting eight 
out of nine members of the population and followed an oscillatory and continuous declination.  It 
is because most of the infectious diseases when one gets infected and did not die, he/she gain 
immunity from it which can resist him/her from re-infection even though he/she is expose to it 
again. As such, the body immunity continues to fight the disease and then the disease may die 
off from the population naturally. In the graph with incubation period, the graph began to decline 
from the three members of the population that was exposed to the disease and then got to day 
10 where it seems as if no member of the population was infected and then rises to one member 
of the population at day 23 momentarily. By comparison with the model without incubation period 
we can say that the population with the model with occupation exhibited a high body resistance 
to fighting the disease than that of model without incubation period. As observed from the 
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continued declination of the model with incubation, even the three members that were exposed 
to the disease actually survived as the graph hit the zero-level population. The sudden rise at day 
16 may occurred as a result of people violating the measures put in place to curtailed the 
infectiousness of the disease. 

 

Figure 3. Graph of infected population versus time 

Conclusion 

In this research, we have numerically analyzed a mathematical model with three classes of 
population, namely; susceptible, incubated and infected populations. The model equations were 
solved using fourth order Runge-Kutta method. Graphical result for incubation class show that 
the infectious diseases were fatal if immediate attention is not given to endemic villages and 
communities. Also, we compared the model with incubation period compartment and the model 
without incubation period. 
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